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Abstract

Three image texture operations are identified: synthesis of texture from

a sample, transfer of texture from one image to another, and plausible

restoration of incomplete or noisy images. As human visual perception

is sensitive to details of texture, producing convincing results for these

operations can be hard. This dissertation presents several new methods

for performing these operations. With regard to texture synthesis, this

dissertation presents a variation on the best-fit method [Efros and

Leung, 1999, Garber, 1981] that eliminates the “skew” and “garbage”

effects this method sometimes produces. It is also fast, flexible, and

simple to implement, making it a highly practical method. Also

presented is a simple and fast technique based on random collage. Both

of these techniques can be adapted to transfer texture from one image to

another. Next, a noise removal method that is guided by a model of an

image’s texture, in the form of a non-linear predictor, is presented. The

method is applied to plausibly restoring the texture of images degraded

by compression techniques such as palettization (e.g. GIF), and to the

removal of Gaussian noise, with results comparable to state-of-the-art

wavelet-based methods. Finally, a more abstract form of texture

synthesis is examined, based on the arrangement of tiles of specified

shape. This is used to show the origins of the artifacts seen in best-fit

synthesis.
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Chapter 1

Introduction

This dissertation describes a number of new tools for working with

texture within the domain of digital images.

It is an easily observed trait that we surround ourselves with texture far

beyond the need of function. Before the modern fashion for austere

perfection, architecture was routinely decorated with intricate patterns

[Fearnley, 1975]. We surround ourselves with interestingly textured

objects and images. Our brains are wired to analyze texture at the

lowest levels of processing (Section 2.1).

There is a gap between our desire for textured objects and the ability of

computer-based design tools to craft texture well. These tools represent

structure using piecewise continuous functions: polygons, spline curves,

smooth gradients of colouration, and so on. They therefore afford the

design of smoothly perfect objects over objects who’s design is partly

dictated by the logic of their texture. A “texture” may be applied to the

surface of some designed object, but such texture does not interact with

the structure of the object being designed. Compare this to chiseling

wood or painting a canvas, where the nature of the material influences

the form of the final product.

9
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The word “texture” is peculiar for being applied to many different kinds

of thing. To make any progress, a specific definition is required. The

definition used in this dissertation is that texture is the localized rules of

arrangement of parts that remain consistent throughout an object.

These local rules may give rise to large scale form, but the rules

themselves should refer only to small areas. Mathematically, these rules

may be treated as a Markov Random Field (Section 2.2.2).

This definition allows for complex textures in ways that may not at first

be apparent. A texture by this definition may be composed of a number

of sub-textures, so long as the sub-texture a local area belongs to can be

determined just by looking at that local area. Such a texture will also

have rules for transitions between different sub-textures.1 It is also

possible, and common, for complex large features to emerge from simple

local rules. An example of this is shown on the title page (see

Section 7.4.2).

This definition of texture allows a range of operations, which are usually

considered separate, to be seen as instances of a small number of

operations on textured objects. Three types of operation are examined

in this dissertation:

1. We might synthesize objects of the same texture as a given

object. These creations could inherit desirable properties present

in the original.

2. If we have only part of an object, or if it has been damaged, we

might try to find a plausible restoration of its original form by

reference to its texture. For example, we might try to fill in gaps2

1This bears some similarity to modulation between keys in music. As in music
[Keys, 1961, pp. 99], the exact boundary between two regions may be somewhat fuzzy.

2Filling in of gaps is often referred to as “interpolation”. However interpolation has
a connotation of smoothness, perhaps restoring features such as edges but usually not
preserving any roughness of texture. Such smoothness is actually quite implausible,
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or correct inaccuracies of measurement, or we might try to infer

the future evolution of a thing changing over time. A restoration is

plausible if it conforms to what is known of the object’s texture.

3. In art, a likeness of an object may be made with a different texture

to the original. This is called texture transfer. For example, an

artist might make a likeness of some object in stone or paint.

This thesis describes ways to perform these three types of operation on

digital images (see Figure 1.1). The focus is on working with existing

texture (with the exception of Chapter 7, which looks at creating new

textures). For digital images:

1. Synthesis, above, refers to texture synthesis from a sample (not

“procedural” texture synthesis).

2. Plausible restoration, above, refers to techniques for noise removal,

image interpolation, and image in-painting. It also has some

relevance to lossy image compression, in that decompressing a

lossily compressed image requires a plausible guess as to the data

that was discarded.

3. Texture transfer, above, refers to a process of giving an image a

certain texture copied from another image. For example, a

photograph could be given the texture of a painting.

Chapter 2 reviews published literature from this novel viewpoint.

Several apparently disparate problems can be seen as instances of the

texture operations identified above. In particular, the plausible

and readily spotted by eye. Hence the term “plausible restoration” will be used in
this dissertation. Another way of looking at this is to say that interpolation picks that
“best possible” restoration, whereas plausible restoration randomly samples from the
field of possibilities.
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Synthesis →

Restoration →

Transfer →

Figure 1.1: Examples of three types of texture operation on digital
images.
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restoration operation unifies noise removal with interpolation and

in-painting of missing areas.

The current state of the art for texture operations on digital images is

the “best-fit” method and its variants (see Section 2.2.2). The best-fit

method was discovered independently by Garber [1981] and Efros and

Leung [1999]. In its most basic mode of operation, when given a sample

of texture in the form of an image, the best-fit method can synthesize

new samples of that texture. The method may be extended to allow

transfer of texture from one image to another, or to plausibly restore a

missing area of an image by extending surrounding texture into it.

The texture operations are computationally hard problems. The

definition of texture given above allows even for textures that can

perform computation such as cellular automata. Sampling from a

Markov Random Field is in general an NP-hard problem. In practice, we

will see that best-fit synthesis gives rise to types of behavior that,

according to Wolfram [2002], are commonly associated with systems

capable of computation. Synthesis of reasonable generality and quality

most likely requires an algorithm capable of universal computation. This

is discussed further in Chapter 7.

The structure of this dissertation is as follows:

Chapter 2 reviews existing literature on image texture operations.

Chapter 3 describes an improvement to the best-fit method. The best-fit

method has some fundamental problems, which may be reduced though

not removed entirely. Applications to texture synthesis, texture transfer,

and plausible restoration of missing areas are described.

Chapter 4 describes enhancements to existing tools for editing and

manipulating images. Existing image manipulation software such as

“The GIMP” and “Photoshop” have only simple tools for operating on
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texture. In images such as line drawings and diagrams, where the

texture is simple, these tools are adequate. In photographs, or other

images with complex texture, even simple operations require time and

skill to produce a good result. The tool described in this chapter makes

some of these operations easy.

Chapter 5 describes a simpler method of texture synthesis that in some

cases produces results as good as the best-fit method, with less

computation. Its application to texture transfer is also described.

In Chapter 6 it is shown that texture modelling allows the removal of

various kinds of noise, including compression artifacts, from images. A

method is described for plausibly restoring an image in which each pixel

value has some specified degree of uncertainty. It is capable of both noise

removal and interpolation of a missing region, problems usually

considered separate.

Chapter 7 examines some computational aspects of texture synthesis in

the context of the arrangement of shaped tiles, placing certain issues that

arise in preceding chapters into a broader context. The patterns a given

set of tiles may be arranged into are unpredictable and often surprising.

Texture operations on images sit half-way between the fields of Image

Processing and Computer Generated Imagery, and cannot properly be

described as fully belonging to either field. Texture synthesis from a

sample generally requires both modelling and generation of texture.

Texture transfer may be seen as filtering by example, or as a way of

generating new artistic images. Plausible restoration may be seen as

interpolation, but it may also generate new details. Let us begin by

reviewing relevant literature from both of these fields.



Chapter 2

Literature review

This chapter reviews published literature relating to how people perceive

texture, and how texture may be synthesized, transferred, or used to

restore images.

2.1 Perception of texture

The three images in Figure 2.1 are 8, 64 and 256 colour versions of the

same scene. There is a clear difference between the 8 and 64 colour

versions, but not between the 64 and 256 colour versions, yet all three

have an easily measured difference in texture, namely the number of

distinct colours.

(a) (b) (c)

Figure 2.1: A scene represented using (a) 8 colours, (b) 64 colours
and (c) 256 colours.

15
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Figure 2.2: Typical figure designed to test texture discrimination
[Bergen and Adelson, 1988, Julesz and Kröse, 1988].

What is perceived when people look at texture? We do not note every

scratch and mark on every surface, if we did so we would be quickly

overwhelmed. Yet neither are we completely blind to these details.

While not consciously perceiving details, we do perceive what kind of

details there are. What form do these perceptions take?

To determine the aspects of a texture that are perceived, one can test

what textures people can discriminate between. A common method is to

present people with a figure consisting of several different textures, and

ask them to locate the boundaries. A figure typical of the kind used in

this type of research is shown in Figure 2.2 [Bergen and Adelson, 1988,

Julesz and Kröse, 1988].

The boundary between the crosses and L’s in Figure 2.2 is immediately

apparent, it “jumps out at you”. This occurs in some texture

discrimination tasks, while others require closer inspection. Texture

discrimination therefore appears to have two distinct modes [Julesz and

Kröse, 1988, Bergen and Adelson, 1988]. The first is a fast unconscious

mode, called “pre-attentive” texture discrimination. It can distinguish

between many, but not all, textures. The second mode occurs when we
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scrutinize an image closely and consciously. This mode can distinguish

between many more textures, but takes time and conscious attention.

To study the preattentive mode, Hubel and Wiesel [1962] measured the

firing of neurons in a cat’s visual cortex. They found “simple” neurons

that responded to specific patterns such as lines and edges at a specific

point on the retina (presumably to detect structural features), but also

“complex” neurons that responded to similar patterns anywhere within a

certain region of the retina (thus detecting textural properties). They

propose that these two types of neuron form the early stages of

processing in the visual cortex.

The patterns detected by these neurons do not seem to be

predetermined, but rather form during a “critical period” of

development. For example, Blakemore and Cooper [1970] raised kittens

that were exposed only to lines of a particular orientation during the

critical period. Subsequently the kittens had difficulty perceiving lines of

different orientation.

Bergen and Adelson [1988] propose a “feature pyramid” as a model of

these pattern detecting neurons. A feature pyramid is a collection of

edge and spot detectors of different scales. Feature pyramids build on

the idea of “image pyramids”. The image pyramid of an image is a

sequences of images at different resolutions: the image at full resolution,

the image at one half resolution, the image at one quarter resolution,

and so on. A feature pyramid is the result of taking an image pyramid

and applying several (linear) filters to each image to extract different

types of feature, such as vertical or horizontal edges. The pixels in such

a pyramid will not map exactly to neurons (which will differ from person

to person in any case), but may represent a collection of features similar

to those detected by people. An example of the features that can be

extracted using a feature pyramid is shown in Figure 2.3.
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Figure 2.3: Example of an image pyramid (left), and some features
that might be extracted from it: spots contrasting with their sur-
roundings, horizontal edges, vertical edges.

However Julesz and Kröse [1988] have shown that feature pyramids are

not a perfect model of human perception, by producing a figure in which

people could easily discriminate two textures but feature pyramids could

not. Julesz suggests that similar figures could be produced for any

feature pyramid [Malik and Perona, 1990]. Malik and Perona [1990] note

that feature pyramids based on non-linear filters can be designed that

do not have this limitation.

2.2 Texture synthesis from a sample

This section reviews methods of texture synthesis from a sample. First

methods based on the perception of texture are reviewed, then methods

based on “Markov Random Fields”.
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2.2.1 Synthesis via perceptual models

If all perceived properties of a texture are replicated in another image,

that image will appear to have the same texture as the original (though

it may differ in properties that are not perceived). We might devise some

measure we believe to be an objective criterion of how similar two

textures are, then design a texture synthesis algorithm that will produce

images that exactly match this criterion. This idea has inspired a variety

of texture synthesis methods.

Heeger and Bergen [1995] describe a method of texture synthesis based

upon the feature pyramid model of Bergen and Adelson [1988], using a

“steerable” feature pyramid. A steerable pyramid detects spots and

vertical and horizontal edges. The method creates an image having, at

each level of the feature pyramid, for each of the three types of feature,

the same histogram as that of the sample. The method performs well on

simple textures, such as rough stone or wood, but fails to produce a

convincing result for textures containing complex features, such as

marble or coral, where correlations between features in the pyramid are

important.

DeBonet [1997] describes a method that uses a “Laplacian” image

pyramid. This type of pyramid has only one kind of feature, spots that

contrast with their surroundings. Unlike the method of Heeger and

Bergen [1995], DeBonet’s method uses correspondences between features,

in that the synthesis of features at each level of the pyramid is affected

by previously synthesized features at higher levels in the pyramid. It is

better able to synthesize complex textures such as coral than the method

of Heeger and Bergen [1995]. This is partly because the method

reproduces sections of the texture sample verbatim in the output, rather

than because the texture is modelled more accurately.
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S1 S2 C1

C2 C3 C4

E1 E2 E3

T1 T2

N1 N2 N3

Figure 2.4: Results of applying the synthesis method of Portilla and
Simoncelli [1999] to the test suite in Appendix A.1.

Portilla and Simoncelli [1999] describe a method of texture synthesis

using complex wavelets. Complex wavelets are a mathematically elegant

variety of steerable feature pyramids. The method synthesizes an output

which has similar distributions of features and similar co-occurrences of

different features to that of the input image. The technique is notable in

that it produces reasonable (though not perfect) results on complex

textures without copying sections of the input image verbatim. Sample

results of this method are shown in Figure 2.4.

While these methods are motivated by theories of perception, their

results are usually visibly synthetic. This would seem to indicate that

our theories of the perception of texture are as yet incomplete. It also

implies that objective criteria derived from such theories are not a good

way to judge the results of a texture synthesis algorithm: for any

criterion we might devise, we can also devise a texture synthesis

algorithm that is near-perfect by that criterion but still fails to entirely
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fool the human eye. Things are not as bad as they might at first seem,

however. At the current level of art, differences between texture

synthesis algorithms can be characterized quite easily in qualitative

terms and, as people all tend to perceive texture in much the same way

(so far as we know), these qualities though difficult to pose

mathematically are likely to be consistent between observers.

2.2.2 Synthesis via Markov Random Fields

Pixel inter-relationships in a texture may be treated mathematically as a

“Markov Random Field” [Winkler, 1995, pp. 209]. The description of

Markov random fields is necessarily abstract, but places many methods

described in the literature within a single framework. The reader is

encouraged to skim the description below, then read it in detail after

looking at the specific applications to texture synthesis given later in this

section.

A digital image is a two-dimensional array of pixels. Each pixel has a

value (an intensity level if the image is gray-scale, or a vector of colour

intensities if it is coloured). If an image is a sample of a particular

texture, each possible assignment of values to pixels has a certain

probability. A probability distribution may be defined over the space of

all possible assignments of values to pixels in an image. This is called a

“random field”.

A Markov Random Field is a random field with a particular property:

Suppose that all but one of the values of an image are known. If the

image is a sample from a Markov Random Field, then the likelihood of

the unknown pixel having a certain value may be determined solely from

the values of a fixed neighbourhood of surrounding pixels. Knowledge of

values beyond this neighbourhood provides no further information.
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(a) (b)

Figure 2.5: Sequential synthesis: the black dot represents the pixel
being chosen. (a) A Markov neighbourhood and a neighbourhood
that might be used by a corresponding causal model are shown. The
causal neighbourhood includes pixels outside the Markov neighbour-
hood. (b) In the worst case, the full width of the image might have
to be used.

Knowledge of the position of the unknown pixel in the image likewise

does not provide further information.

Texture modelling can be seen as the estimation of a Markov Random

Field, and texture synthesis as the production of a sample from a

Markov Random Field.

As pixel values in a Markov Random Field do not depend on the

position in the image, a single sample image is sufficient to estimate a

Markov Random Field model. Every pixel and its neighbours is a sample

from the conditional probability distribution applying to all pixels of the

image.

The method by which a Markov random field is synthesized depends on

the form in which it is specified. Some forms afford fast synthesis, while

others require lengthy computation.

Suppose the pixels of an image are ordered (for example, in raster-scan

order). Further suppose that there is a way to calculate, for each pixel,

the probability distribution of possible values given only preceding pixels

in the ordering (a “causal” model). Then a sample of the texture may be

produced sequentially, one pixel at a time. A random value is chosen for
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each pixel, in order, based on the calculation of these probability

distributions.

Sequential synthesis is efficient, but has a major drawback: the causal

model may need to use the values of pixels outside of the Markov

neighbourhood, because a pixel outside the neighbourhood might affect

the value of future pixels within the Markov neighbourhood (possibly via

several intermediate pixels). The number of pixels the causal model

needs to examine could be much larger than the number of pixels in the

Markov neighbourhood (see Figure 2.5). The severity of this problem

may depend on the ordering of pixels used. For example, rastering from

left to right might require a smaller causal neighbourhood than rastering

from top to bottom for a particular texture.

If a causal model is not available, or is impractical, it may be necessary

to use the Metropolis-Hastings algorithm or one of its variants [Winkler,

1995, pp. 214]. This algorithm produces a sequence of samples which

conform to the probability distribution of the Markov random field when

produced in sufficient quantity. The algorithm produces each sample in

turn by randomly changing one value in the previous sample, then either

accepting or rejecting the change. The change is always accepted if the

resulting image is more probable than the original, but also sometimes

accepted if it is less probable.

The Metropolis-Hastings algorithm requires an initial sample to be

chosen, and it may take many many iterations for it to move from the

initial sample to a likely sample of the texture.

Texture synthesis methods based on Markov Random Fields will now be

described.
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Methods with distinct modelling and synthesis stages

Chellappa and Kashyap [1985] describe a way to find an invertible linear

filter that produces white noise when applied to a particular sample of

texture. That texture can then be synthesized by applying the inverse of

the filter to white noise. The filter and a description of the distribution

of the white noise values together can be seen as defining a Markov

Random Field. The method can reproduce a range of textures, but the

simplicity of the texture model limits its ability to reproduce complex

textures.

Monne et al. [1981] model texture using a table of the likelihood of each

possible assignment of values occurring in a rectangular block of pixels

at a random position in a textured image. This may be estimated from a

texture sample by counting the number of instances of each possible

block of values. The texture sample must be large enough that enough

instances of each block are present to yield an accurate probability

estimate. The number of estimates required is proportional to the

number of distinct colours in the image raised to the power of the

number of pixels in a block. This will be large if the number of colours

or the size of block is not small, limiting the complexity of textures that

may be modelled.

Monne et al. [1981] synthesize images from this model sequentially line

by line. For each pixel in each line, information from all pixels in

preceding lines is used, as well as preceding pixels in that line (as in

Figure 2.5b). The complexity of this calculation rapidly increases with

the number of colours and number of pixels in a block. It is only

practical with a small block size and a small number of colours.
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Best-fit synthesis

The “best-fit” synthesis method has been independently invented at

least twice [Efros and Leung, 1999, Garber, 1981]. It is an unusual

method in that the new image is synthesized directly from the sample

texture, without an intermediating texture model.

Best-fit is a method of causal synthesis, pixel values are chosen one at a

time. To choose the value of a pixel, neighbouring values in the output

are examined. The sample texture is searched for close matches to this

arrangement of values (hence the name “best-fit”). One of the closest

matches is chosen, and the corresponding pixel’s value is copied to the

output image. The goodness of fit of two neighbourhoods is generally

defined as the sum of squared differences between them.

Sample results of the best-fit method (using Garber’s variant) are shown

in Figure 2.6. These results demonstrate both the strengths of the

best-fit method and its problems. The method produces plausible

variations on the input, to a level of complexity that no other method of

texture synthesis can match. However, the results tend to be uneven.1

Areas of the input may be copied verbatim, especially if there is only one

example of a certain feature. Sometimes a pattern will repeat itself

inappropriately, producing odd lines or repeating blocks, as can be seen

in C1, C3, and E3. Sometimes the algorithm will simply produce

garbage, as can be seen in E1 and T1. The texture is also skewed, in a

way that depends on the order in which it was synthesized (in the case

of Figure 2.6, a top-to-bottom left-to-right raster scan).

The obvious culprit for these problems is best-fit synthesis’s causal

nature. The neighbourhood of pixels required to accurately synthesize

1In defense of Garber, it may be possible to tweak his algorithm to reduce these
faults, perhaps by raising or lowering the amount of randomness involved in pixel
selection—but it is not easy to predict when or how much tweaking will be necessary.
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S1 S2 C1

C2 C3 C4

E1 E2 E3

T1 T2

N1 N2 N3

Figure 2.6: Results of applying the best-fit synthesis method of Gar-
ber [1981] to the test suite in Appendix A.1.
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the texture may be large (as in Figure 2.5), however if the

neighbourhood used is large there may be few or no good matches in the

texture sample. The result will either be large sections of the texture

sample copied verbatim to the output, or garbage [Efros and Leung,

1999]. If on the other hand the neighbourhood used is too small, the

output may appear skewed. This effect is especially noticeable if the

image is generated in raster scan order. Efros and Leung [1999] make the

distortion less visible by adding pixels from the center outwards in an

irregular radial pattern. However, it will be seen in Chapters 3 and 7

that this causal nature is not the only source of problems.

The best-fit method is also computationally expensive. For every pixel

in the output image, the entire sample texture must be searched for a

good match. The high dimensionality of the search space means that

even with the use of clever search algorithms, a large proportion of pixels

in the image must be considered.2

A number of variations on the best-fit technique have been devised that

work around the aforementioned drawbacks [Wei and Levoy, 2000,

Ashikhmin, 2001, Harrison, 2001, Efros and Freeman, 2001, Liang et al.,

2001].

Wei and Levoy [2000] use an image pyramid to reduce the distortion

caused by causal synthesis. The use of a pyramid also represents a way

to efficiently use a large neighbourhood to select pixel values. Output is

generated first at a coarse scale then at progressively finer scales until

the desired scale is reached. In other words, an image pyramid is

generated from the top down. When choosing each pixel value, causal

neighbours on the current level and all neighbours in the next higher

2An odd property of high dimensional spaces is that in a cluster of points each
point will be roughly the same distance from all other points. This makes it hard to
eliminate groups of distant points en-mass using a “kd-tree” search [Friedman, 1977] or
similar [Yianilos, 1993, Brin, 1995], as might be possible in 2- or 3-dimensional search
problems.
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level are examined. As the neighbourhoods examined are partly

non-causal, distortion due to sequential synthesis is reduced.

The author [Harrison, 2001] describes a method for ordering the

synthesis of pixels so as to minimize the distortion introduced by causal

synthesis. This method builds the output a pixel at a time, as in the

original best-fit algorithm, but tries at each step to choose a pixel in the

output that is highly constrained by the values of its neighbours, and

therefore, hopefully, who’s causal neighbourhood is not much larger than

its full Markov neighbourhood. This serves to hide the “skew” effect, but

is otherwise not a large improvement on the original best-fit algorithm.

The algorithm is superseded by the best-fit variant described in the next

chapter. A copy of the paper has been relegated to Appendix B.

Efros and Freeman [2001] describe a method they call “image quilting”

which is significantly faster than the best-fit method. In this, the output

is composed of tiles selected from the sample texture. The tiles overlap,

and are selected so that where they overlap they are as similar as

possible. The texture sample is only searched once per tile rather than

once per pixel as in the original best-fit method. A transition line of

minimum discrepancy between adjacent tiles is found, in order to

disguise tile boundaries. Results are comparable to the best-fit method,

except that this method will not produce “garbage”. Liang et al. [2001]

describe a variety of improvements and optimizations to this method.

Kwatra et al. [2003] describe a variant they call “graph-cut” in which the

patches can be of any shape. After initial seeding in the manner of Efros

and Freeman [2001], the edges of patches are allowed to move about

arbitrarily as they search for paths of minimum discrepancy. Graph-cut

can also be used as a tool for producing a seamless boundary between

two images. Xu et al. [2000] found that results acceptable for some

applications may be obtained even if patches are chosen at random, so

long as edges are disguised (either by feathering or best-fit synthesis over
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the border region). They call this random method a “Chaos Mosaic”.

Ashikhmin [2001, 2003] describes an optimization to best-fit synthesis in

which only continuations of the areas copied to surrounding pixels, plus

a small number of random locations, are considered when choosing each

new pixel value. This provides a considerable speed-up, and reduces the

“garbage” effect. It can also reduce quality, since the small number of

candidates considered for each pixel increases the likelihood of there

sometimes being no good match.

2.2.3 Texture synthesis on curved surfaces

In three dimensional computer graphics it is common to want to texture

a curved surface, for example to give an animal realistic skin texture. A

flat texture may be “mapped” over a curved surface, but this usually

distorts the texture—some sections are stretched while others are

compressed. To give a surface an undistorted texture, the texture must

be synthesized over the surface itself.

If the neighbourhood of a point on a surface can be defined, Markov

Random Field models can be adapted to synthesize texture over

surfaces. Ma and Gagalowicz [1985] describe a way to do this. On a flat

plane, a particular neighbour to a point is a certain distance along a

straight line in a certain direction. On a flat plane, direction may be

defined in terms of an angle from the up vector (vertical axis). On a

curved surface, up and other directions have no clear definition, so a

vector field of up vectors must be specified by hand. On a curved surface

the equivalent of a straight line is a “geodesic”, being the shortest

possible path between two points. So, on a surface, a point’s local

neighbourhood may be specified by stepping along geodesics of set

lengths in directions relative to a given vector field over the surface.
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Turk [2001] and Wei and Levoy [2001] concurrently developed methods

for applying the multi-scale best-fit algorithm of Wei and Levoy [2000] to

surface texture synthesis, both with convincing results. Turk’s method

allows the user to specify direction vectors at a small number of points

on the surface, which are then used to produce a vector field covering the

whole surface, allowing the user to control the direction of the texture.

Praun et al. [2000] describe a simpler method that involves pasting

irregularly shaped patches over the surface until it is covered. This is

similar to the Chaos Mosaic method [Xu et al., 2000]. A vector field is

again required, to choose the orientation of patches. An interesting

finding reported by Praun was that it is better to conform patches to the

vector field than to use one point of the vector field to orient a patch and

minimize distortion of the patch. By conforming closely to the vector

field, stripes of texture curve smoothly rather than bending abruptly at

patch boundaries.

2.2.4 Texture transfer

Texture transfer allows one image to be given the texture of another.

For example, a photograph could be given a paint texture, producing a

synthetic painting. Texture transfer is a natural extension to best-fit

synthesis. During synthesis, pixel values are chosen not just to fit well

with already chosen values but also to conform to features in the target

image.

Texture transfer via best-fit synthesis was invented independently at

least three times within a short period by the author [Harrison, 2001],

Hertzmann et al. [2001], and Efros and Freeman [2001]. Variants of

best-fit synthesis have also been adapted to texture transfer. Hertzmann

et al. [2001] have adapted the multi-scale method of Wei and Levoy
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[2000], and Efros and Freeman [2001] have adapted their image quilting

method.

Texture transfer can be seen as image filtering by analogy [Hertzmann

et al., 2001]. Image A is to image B as image C is to what image? For

example, texture transfer may be used to sharpen images, given blurred

and sharp versions of some sample image [Hertzmann et al., 2001,

Ashikhmin, 2003].

2.3 Plausible image restoration

Images may be degraded in various ways. A region of an image may be

unavailable (for example, if there is an unwanted object in an image that

must be deleted), or the pixel values of an image may be known only

imprecisely. A degraded image may be plausibly restored by inventing

values for the unknown data that are consistent with what is known.

2.3.1 Restoration from a texture synthesis

perspective

Igehy and Pereira [1997] adapted the texture synthesis method of Heeger

and Bergen [1995] to the task of plausibly filling in missing areas of an

image with homogeneous texture. The texture is matched to the rest of

the image through a border area, such that the grain of the image lines

up with the grain of the synthesized area. This was applied to removing

objects from photographs. For example, an object obscuring a grass

background could be replaced by synthesized grass texture. Drawbacks

of this method are that it can only be used with simple textures, and

that it can not extend features such as edges into the missing region.
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Efros and Leung [1999], in their paper describing the best-fit method,

also describe filling in missing regions of images. This is trivial for the

best-fit method, as it already operates by filling in the image a pixel at a

time. Unlike the method of Igehy and Pereira [1997], this can synthesize

complex textures and extend features such as edges into the missing

region.

As with best-fit texture synthesis, the order in which pixel values are

chosen is important. Criminisi et al. [2003] describe a way to choose a

good order of synthesis so as to best restore edges. Criminisi et al. [2003]

compare their method to the way human visual perception fills in

missing edges of partially occluded objects.

Meyer and Tischer [1998] consider an image with randomly corrupted

pixels (as opposed to a region of missing pixels). A causal Markov model

of the image’s texture is required. This model may derived from similar

but uncorrupted images. The model used has around 1,000 parameters,

and is based on combining the results of several linear predictors. Values

for corrupted pixels are then chosen to maximize the likelihood of the

image, given the model. An unusual feature of this method is that it is

stated in terms of image compression – the most likely selection of pixel

values turns out to also be the selection that allows the image to be

stored in the smallest number of bits. The method is also capable of

identifying which pixels are likely to have been corrupted.

2.3.2 Restoration from a noise removal perspective

The removal of additive noise from an image can be seen as a form of

plausible restoration. The addition of noise to an image means that the

pixel values are known only imprecisely, and we may then seek plausible
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true values of the pixels. Many methods of additive noise removal have

been proposed. These methods are of the “interpolation” type (see

footnote in Chapter 1) and seek the best possible restoration, even if this

best restoration is not representative of the full field of plausible

restorations. For example, the restoration will commonly be smoother

than is plausible.

Noise removal is a very large field, and this section represents only a

sampling of existing work sufficient to convey its character.

One straightforward approach is linear filtering. This method derives

from stating that elements in the Fourier transforms of the image

(signal) and the uncertainty about the image (noise) will have Gaussian

distribution. These elements’s variances (the expected “spectral

density”) are estimated, and from these an optimal “Weiner Smoothing

Filter” is derived [Helstrom, 1990]. This filter is always linear. The noise

component is commonly taken to be white noise, having a uniform

spectral density. The image may be estimated to not contain high

frequencies (i.e. to be smooth). Alternatively the spectral density of the

image may be estimated from the spectrum of the noisy image. In either

case, the resulting Weiner Filter will generally be a low-pass filter.

A low-pass filter will blur any sharp edges in an image, so linear filtering

is of limited use for additive noise. The limitations of linear filtering led

to investigation of non-linear filters.

Non-linear approaches described in the literature vary in complexity.

The Lee Filter [Lee, 1980] is an example of a simple but effective

non-linear filter. Where a local estimate of the variance of pixel values is

low the filter blurs the image, but where it is high the image is left

unchanged. Edges, containing a mixture of two levels and thus having

high overall variance, are left un-blurred.
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A more sophisticated method based on minimizing the “Total Variation”

was developed for the US military [Rudin et al., 1992]. The Total

Variation method models the texture of the image as tending to have

small gradient at each point. The magnitude of the gradient is assumed

to have an exponential distribution. Noise is modelled as being

Gaussian. Finding the most likely true image under these assumptions

requires minimizing a norm similar to L1 subject to the constraint that

the noise removed has an a priori specified variance.3

The texture model of the Total Variation method, by using an L1-like

norm, rates smooth gradients and sharp edges as being equally likely.

Consequently, the Total Variation method preserves sharp edges in an

image. A texture model that made a more traditional assumption of a

Gaussian distribution of gradients would prefer smooth gradients to

sharp edges. Rudin et al. [1992] report that the Total Variation method

is superior to the human eye at extracting features from a noisy image.

The current state of the art (to the author’s knowledge) is a method by

Portilla et al. [2003].4 This is a complex method, but the results justify

this complexity. The image first is decomposed into a highly-redundant

steerable image pyramid. Elements in this pyramid are then modelled as

being linearly related to their neighbouring elements both in value and

in level of variance. From this model, the average expected value of each

element in the pyramid is computed. An image is then reconstructed

3The Lp norm of a list of values xi is (
∑

i |x|p)
1
p . A norm Lp may be mapped by

a monotonically decreasing function to a corresponding probability density function of
form ae(b

∑
i
|x|p) (where a and b are constants). For example, L2 may be mapped to a

Gaussian distribution. Minimizing a norm will maximize the corresponding probability
density.

4Two of the authors of this paper previously published a method of texture synthesis
motivated by a model of human vision [Portilla and Simoncelli, 1999]. Their work thus
somewhat parallels this thesis in considering texture synthesis and noise removal as
related problems. Broadly, the difference in approaches is that they treat texture as
being composed of inter-related features whereas this thesis treats texture as the inter-
relation of pixels and does not explicitly model features (instead letting features emerge
from the rules of pixel relationships).
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from this de-noised pyramid.

Specialized methods have also been designed to remove the noise

introduced by JPEG compression [Zakhor, 1992, Yang et al., 1993,

Llados-Bernaus et al., 1998, Meier, 1999]. JPEG breaks an image into

8× 8 pixel blocks and performs a Discrete Cosine Transform on each

block. The output of the transform is quantized and stored concisely.

When decoding JPEG images, there is uncertainty as to the true value

of each element in the block transforms due to quantization. JPEG

decoders assume that each element is independent, and for each element

minimize the expected error by choosing the center of the range of

possible values. This is a reasonable assumption, as the purpose of the

DCT is to decorrelate each 8× 8 block. However the DCT ignores

correlations between adjacent blocks, and the decoder may produce

visible block borders if the quantization level is too high.

The method of Llados-Bernaus et al. [1998] is typical of JPEG

restoration methods. As in the Total Variation method, this method

minimizes a norm subject to constraints. The image is taken to be more

likely to be smooth than rough, including across block boundaries.

Therefore, differences between neighbouring pixels are expected to be

small. Penalties are imposed on each difference by the use of a “Huber

function”, and these penalties are added to give a measure of how

unlikely a particular reconstruction is. Huber functions are a compromise

between the L2 and L1 norms, combining the smoothness of L2 with the

robustness of L1. They correspond to a Gaussian distribution of values

with fat tails.5 The pixel values are constrained such that the DCT

transform elements, when quantized, match the file being decoded.

Though some of these methods use texture models of moderate

complexity, any non-linear components are specified a priori. Adaptation

5But see Section 3.1.1.
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to the image’s texture, though perhaps embedded in a non-linear

framework, is limited to linear modelling or the tweaking of a small

number of parameters. This limits these methods’s ability to restore

images with novel features.

New procedures for noise removal are constantly being published. Most

of these procedures boil down to ever more elaborate a priori models of

image and noise texture (though they are not necessarily described as

such). Recent papers have included a procedure that constrains the

Total Variation to be below a specified level rather than simply

minimizing it as far as possible [Combettes, 2004], a method for

enhancing edges while blurring other areas based on diffusion processes

[Gilboa et al., 2002], and a denoising technique adapted from fractal

image compression [Ghazel et al., 2003] (a potentially interesting

approach, however the particular iterated function used introduces block

artifacts when used for denoising).

2.3.3 General image restoration

Drori et al. [2003] present an elegant formulation of the plausible

restoration problem. The input is an image where each pixel has an

alpha value in addition to a colour. Pixels with high alpha are known to

high accuracy, while pixels with low alpha are known to low accuracy.

The problem is to find an image such that if the input is

alpha-composited over it the result has consistent texture. Though not

stated in the paper, this formulation encompasses the problem of noise

removal if the input image is given a constant alpha value of slightly less

than one.

The solution to this problem presented by Drori et al. [2003] is effective

but inelegantly complicated, combining smooth interpolation, image
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pyramids, and a patch-based variant of the best-fit method. Finding an

elegant solution to this elegantly general problem is an open and

interesting problem.



Chapter 3

Improving best-fit texture

synthesis

In the previous chapter, we saw that the best-fit method can be used to

synthesize complex textures, but also that it has some serious problems:

• Speed: Production of each pixel in the output requires a full

search of the input.

• Artifacts: The method sometimes produces “garbage” and

repeated patches.

• Skew: The order in which pixels are chosen can visibly distort the

output.

A long list of attempts to reduce these problems was given in the

previous chapter. These involved the used of multi-scalar synthesis, or

working with blocks of pixels rather than individual pixels. Use of these

techniques places constraints on the size and shape of the image that can

be synthesized. These methods may also introduce artifacts of their own.

For example, in block based synthesis the seam between blocks can

become visible.

38
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10% ... 25% ... 75% ... 100%

Figure 3.1: Pixel values are chosen in random order.

This chapter adds another method to the list.1 The new method is

distinguished, however, by its combination of simplicity, speed, small

number of parameters, and the absence of any constraints on the size and

shape of the area to be synthesized. It is a practical algorithm and is in

current use in the form of an open-source GIMP plug-in (see Chapter 4).

3.1 Algorithm

In this new algorithm, pixel values are chosen one at a time in random

order (as illustrated in Figure 3.1). This avoids any possibility of

consistent skew due to the order in which pixels are selected. When

choosing the value of a pixel, the n nearest pixels that already have

values are located.2 The input image is searched for a good match to the

pattern these pixels form (see next section). Once a good match is

found, the appropriate pixel value is copied from the input texture to the

output. To increase quality, some earlier chosen pixel values are

re-chosen after later pixel values have been chosen (see Section 3.1.2).

Early in the process, when the density of chosen pixels is low, pixel

values will necessarily be chosen on the basis of far distant pixels. Later,

when more of the image has been filled, pixel values are chosen on the

1An earlier attempt at addressing some of these problems was presented as a paper
at WSCG’01 [Harrison, 2001], a copy of which is given in Appendix B.

2Or if there are less than n pixels, however many are available. The first pixel is
effectively chosen at random.
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basis of close neighbours. This approach is therefore implicitly (rather

than explicitly) multi-scalar.

This implicit multi-scalar approach does not constrain the output to be

of a particular set of sizes (as do methods based feature pyramids or

tiles), giving it the flexibility needed for practical applications. The lack

of constraints is of particular importance when performing plausible

restoration of an irregularly shaped area in an image (for example, to

remove an unwanted object or blemish).

3.1.1 Searching the input texture

When choosing each pixel value, only a small number of locations in the

input texture are examined, yielding a considerable speed-up as

compared to a search of the whole image. This optimization was first

introduced by Ashikhmin [2001]. The locations examined are:

• Continuations of the regions in the input texture associated with

the n nearest pixel values that have already been chosen (i.e. as if

the current pixel and one its neighbours formed part of a patch

copied exactly from the input texture).

• A further m random locations.

The use of continuations allows production of good results even when a

small number of locations are examined in each individual search.

The best fit out of each of these locations is selected, based on

comparison of the pattern formed by the n nearest known neighbours of

the current pixel to the pattern formed by pixels at corresponding offsets

about each candidate location. To make this comparison the algorithm
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uses a robust metric3 based on the Cauchy distribution, as described by

[Sebe et al., 2000]. The explanation of this metric first requires

discussion of some background assumptions commonly taken for granted:

Each pattern may be represented by a vector u of values u1 . . . uN , those

values being the colour components (red, green, blue) of each pixel in the

pattern. Let us model the field of all possible patterns as a mixture of

classes (a “mixture model”). We could aggregate sets of similar patterns

in the input into similar classes, but this would throw away information

about individual patterns, producing poor results (see Wei and Levoy

[2000] for example). Instead we shall say that each pattern in the input

represents a single class.

Having only one instance u of each class, the best estimate we can make

of the center of that class is just that instance u. To fully define each

class, we also need a density function giving the spread of possible values

v around that center point u, F (v − u). Let us assume that F is the

same for each class (having only one instance of each class, we have no

information about spread for individual classes). Let us further assume,

for simplicity, that each dimension of the spread is independent of each

other dimension, and is identically distributed, such that F may be

calculated from a single-dimensional spread function f :

F (x) =
N∏

i=1

f(xi) (3.1)

Now, given a pattern v, we can calculate the likelihood of it having

occurred if it were it an instance of each of these classes by evaluating

F (v − u). If we say that each class is equally likely to occur, the class

producing the greatest F (v − u) will also be the class it is most likely to

3The word “metric” is here used to mean simply a standard way of measuring
something, and not in the strict mathematical sense of a distance function used to
define a metric space.
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be an instance of, the “best fit”.

To avoid floating-point underflow and in order to simplify calculation

somewhat it is better to work with negative logarithms than raw

probability densities:

− log F (x) =
N∑

i=1

− log f(xi) (3.2)

The class that minimizes − log F (v − u) is the best fit. All that remains

is to choose f .

The standard distribution f used in the best-fit algorithm (and in many

other algorithms) is the Gaussian distribution. The Gaussian

distribution is:

1

σ
√

2π
e
−x2

2σ2 (3.3)

The negative logarithm of this distribution is proportional to x2. This is

the derivation of the commonly used “sum of squares” criterion, also

called the Euclidean distance metric or L2. Note that the same class will

be judged most likely regardless of σ.

The Cauchy distribution, used in the present algorithm, is:

1

πσ
(
1 + x2

σ2

) (3.4)

where σ is the “dispersion”, analogous to the standard deviation of the

Gaussian distribution.4 See Figure 3.2 for a comparison of this

distribution to the Gaussian distribution. This distribution has very

4The Cauchy distribution does not have a finite standard deviation.
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Figure 3.2: The Gaussian and Cauchy distributions.

much fatter tails than the Gaussian distribution, making it robust to

outliers. The negative logarithm of this distribution is proportional to:

log

(
1 +

x2

σ2

)
(3.5)

A sum of these terms is used as the goodness-of-fit metric in the present

algorithm, with one term for each colour component (red, green, blue) of

each pixel compared. σ is significant for this distribution, and must be

specified as a parameter.5

If a Cauchy based metric is used, one or two bad pixels in an otherwise

good match will not cause that match to be rejected outright, as they

would were the Gaussian based metric used. This means that in every

search there will be more matches of comparable merit. Repetition and

“garbage” are reduced, and overall quality is increased. This is

illustrated in Figure 3.4.6

5So long as we are only concerned with finding the most likely match, not relative
likelihoods, the Euclidean distance metric may be simulated in this metric by choosing
a very large σ. Indeed, any member of the “t” family of distributions may be so
simulated.

6The predecessor of this current algorithm, described in Harrison [2001], used the
absolute value metric (aka Manhattan distance or L1). This is another robust metric,
and derives from the Laplace distribution (e−|x|). This too is more robust than the
Gaussian derived metric, increasing only linearly with the degree of discrepancy, but
is not nearly as robust as the Cauchy derived metric, which increases as the log of
the discrepancy. Another reason to favour the Cauchy distribution over the Laplace
distribution is that, as with the Gaussian distribution, it is a member of the Lévy alpha-
stable family of distributions (see Mandelbrot [1983, pp.368]). These distributions are
produced, amongst other things, in “Lévy flights”, a form of random walk commonly
seen in nature (and even stock-market fluctuations [Mandelbrot, 1983, pp.337–340]).
Processes that give rise to interesting texture, such as textures with a fractal character,
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3.1.2 Refining early-chosen pixel values

Early-chosen pixel values are chosen on the basis of far-distant pixels,

and may turn out to be inappropriate once nearer pixels have been filled

in. Early chosen pixel values are also not chosen with the benefit of

being able to continue the regions in the input texture associated with

well chosen nearby pixels. For these reasons, the algorithm re-chooses

early chosen pixel values once later pixel values have been chosen.

The sequence of choosing and re-choosing used (where N is the number

of pixels in the output, and p is some constant 0 ≤ p < 1) is this:

Choose the first pixel.

. . .

Choose the first bp3Nc pixels.

Choose the first bp2Nc pixels.

Choose the first bpNc pixels.

Choose all N pixels.

This sequence allows refinement both in the coarse early stages and the

fine later stages. It makes good use of the ability of well fitting regions

to propagate between neighbouring pixels. The cost of re-choosing can

be offset by examining less locations within each individual search.

Small modifications to the value of p, so long as a corresponding

adjustment is made to n, have very little affect. When re-choosing, the

result from the earlier search (the pixel’s “continuation of itself”) is

included in the list of locations examined, and therefore not lost. The

value of p used to produce the results presented here was 0.75.

often involve Lévy flights.
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3.2 Results

Figure 3.3 shows the result of applying the method to the test suite of

textures given in Appendix A.1. The n = 30 nearest pixels, and m = 80

further random locations were used in the searches. σ = 30 was used in

the goodness-of-fit metric (the range of each colour component being 0

to 255).

There are some flaws in the images produced. Certain features in C1

have been duplicated in an obvious way. C3 appears normal at first

glance, but closer inspection reveals a number of deformed pumpkins (it

is hard to imagine an algorithm that would correctly infer from a single

image that pumpkins are distinct objects). In C4, the cracks do not all

join up as they do in the original. The tiling patterns (T1, T2) did not

produce tiled results. However, overall results were quite faithful to the

input.

As might be expected, the images that were not homogeneous textures

did not produce sensible results (N1, N2, N3).

The effect of changing σ is illustrated in Figure 3.4. Small σ produces a

more representative sample of the input texture, but also produces sharp

transitions between patches of texture. Large σ (equivalent to using a

sum-of-squares metric) produces smooth transitions between patches of

texture, but sometimes some features of the texture are over-represented

while others are under-represented. This is akin to the “garbage”

produced by the standard best-fit algorithm (see Figure 2.6).

Each image took around 20 seconds to produce, using a 3GHz Pentium-4

processor. The algorithmic complexity is linear in the size of the output.

Importantly, it is not dependant on the size of the input texture, making

this a suitable algorithm for large texture images. This speed makes it

suitable for interactive use as a smart selection-eraser, useful for
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touching up photographs (this will be discussed further in the next

chapter). It would not be suitable for real-time applications such as

graphics in a computer game. The speed is comparable with that of tile

based methods [Efros and Freeman, 2001, Liang et al., 2001], and the

graph-cut method [Kwatra et al., 2003]. The original best-fit method

[Efros and Leung, 1999, Garber, 1981] is considerably slower, and would

take many minutes to a produce an image of the same size as those

presented here. Ashikhmin [2001], who uses a similar search strategy,

reports a speed considerably faster than that of this method. This is

most likely due to use of a smaller neighbourhood of pixels and less

searching per pixel. Note also that Ashikhmin [2001]’s method produces

visible artifacts due to the raster-scan order in which pixels are chosen.
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S1 S2 C1

C2 C3 C4

E1 E2 E3

T1 T2

N1 N2 N3

Figure 3.3: Texture synthesis results.
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σ = 5 σ = 30 sum of squares
(σ large)

C1

C3

C4

Figure 3.4: Effect of different σ.
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3.3 Texture transfer

Texture transfer allows the texture of one image to be transferred to

another (see Section 2.2.4). To perform texture transfer, terms may be

added to the goodness-of-fit metric in order to specify the layout of

different regions of texture in the output image. Two extra images are

required, one being a map of regions in the input and the other a

corresponding map of regions in the output. In these maps, different

colours indicate different regions, and similar colours similar regions. It

sometimes suffices simply to use the images themselves as these maps.

In order to retain the multi-scalar nature of the algorithm, it was

decided to compare these maps at the same locations as the pixel values

being compared, plus the central location. A Gaussian based (squared

difference) rather than Cauchy based goodness-of-fit metric was used for

these terms, as this was found to give better results. Such a metric

heavily penalizes large deviations from the map, while allowing small

deviations. This is a good complement to the Cauchy based metric used

for the texture itself, which heavily penalizes small magnitude deviations

but is proportionately more forgiving of large deviations. The result is

an image that replicates the texture accurately in fine detail, but also

never deviates excessively from the specified output map.

3.3.1 Results

Texture transfer was applied to the texture transfer test suite given in

Appendix A.2, using the texture as its own map. Results are shown in

Figure 3.5. Acceptable results were produced from the paint texture

(S1), but the jellybean texture (S2) produced less impressive results.

When selecting pixels, the synthesis procedure is searching for
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correspondences between a group of pixels in the input and output

maps. This search occurs in a space with dimension equal to the number

of pixels times the number of colour channels per pixel. To improve

results, the size of this search space can be reduced so that there is

greater chance of finding correspondences. One simple way to do this is

to reduce the maps from colour to gray-scale, dividing the number of

dimensions by three. This was used to produce the results shown in

Figure 3.6. The input and output maps and the input texture were

reduced to gray-scale images. After synthesis, the colour from the

original output maps was copied to the synthesized images.

Using this process, the limited palette in the textures is not a problem.

The results are now quite faithful to the output map, however some

subtleties of colouration present in the textures have been lost.
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S1
I1

S1
I2

S2
I1

S2
I2

Figure 3.5: Results of texture transfer.
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S1
I1

S1
I2

S2
I1

S2
I2

Figure 3.6: Results of texture transfer, retaining original colours.
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3.4 Plausible restoration

Texture synthesis has been previously applied to the removal of objects

on a homogeneous background by synthesizing a new section of that

background [Igehy and Pereira, 1997]. An example of this is shown in

Figure 3.7c. Texture transfer allows synthesis of a new background to

replace an object, even if the background is non-homogeneous.

Figure 3.7a shows a picture of a donkey standing in a field. In this

picture, the field is not homogeneous because of perspective distortion.

A feature map of the image (Figure 3.7b) was constructed manually,

with parts of the image equidistant from the camera having the same

value. The texture transfer variant just described was then used to

synthesize a new section of the background to replace the donkey, using

the rest of the background as input texture. The new section matches

with the existing background and follows the feature map. The result is

shown in Figure 3.7d.

3.5 Discussion

The algorithm described in this chapter used a variety of enhancements

to the original best-fit algorithm. Choosing pixel values in random order

eliminated the problem of skew. Garbage and repetition were also

reduced, but not eliminated entirely. Another way of looking at this is to

say that even with random ordering certain parts of a texture were

obsessively over-represented in the output. The import of this will be

explored further in Chapter 7.

The further change of using a robust Cauchy-based metric was required

to yield output that was a representative sample of the input. As this is

an unglamorous topic, and easily overlooked, it will be mentioned briefly
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(a) (b)

(c) (d)

Figure 3.7: Example of object removal. (a) original image (from
Igehy and Pereira [1997]), (b) map, (c) object removed without using
map, (d) object removed using map.

here that the use of the Cauchy distribution and other alpha-stable

distributions in places where the Gaussian distribution and its associated

least-squares criterion have formerly been used has yielded improvements

in robustness and performance to a wide range of signal processing tasks

[Nikias and Shao, 1995]. An ongoing shift away from use of the Gaussian

distribution may reasonably be expected in a variety of fields.

The next chapter describes software that allows the algorithm described

in this chapter to be used in everyday image manipulation tasks.



Chapter 4

Adding best-fit texture

synthesis to the GIMP

In order to be useful, texture manipulation techniques need to integrate

with existing software. This chapter describes integration of the method

of the previous chapter into the GNU Image Manipulation Program

(GIMP, http://www.gimp.org/).

The GIMP was chosen because it is popular, and because it provides

facilities for extending its capabilities. The GIMP’s extensibility comes

in two forms, plug-ins and scripts. Plug-ins are written in C or C++,

and have low level access to image data structures. Scripts are written in

Scheme, Perl, or Python, and can be used to combine plug-ins and the

GIMP’s built-in tools to perform complex tasks.

The implementation of texture operations may be complex, but the

problems they solve are easy to understand. Thus their implementation

in software need not be hard to use. Care was taken to eliminate as many

parameters as possible. It is impolite to trouble people intent on their

task at hand with obscure mathematical details of the tools they use.

55
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Figure 4.1: The interface to the best-fit synthesis plug-in.

(a) (b)

Figure 4.2: Scripts using the best-fit plug-in, which also have simple
interfaces: (a) enlarge an image, (b) remove a selection.

A 900 line GIMP plug-in (written in C++) was created to perform the

best-fit synthesis variant described in the previous chapter. This plug-in

can perform texture synthesis, texture transfer, and plausible restoration

of missing areas in an image. It can be obtained from

http://www.logarithmic.net/pfh/thesis (or the CD accompanying

this dissertation).

A screenshot of the plug-in’s user interface is shown in Figure 4.1. As

can be seen, the interface is straightforward, with a minimum of options.

By using the GIMP’s facility for selecting regions, the plug-in can be

used to synthesize texture over a specific area of an image. Plausible

restoration (as in Figure 3.7) is straightforward.
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The GIMP’s scripting facility can be used to automate use of the

plug-in. For example, a script was written to enlarge images while

retaining their texture and the sharpness of their edges (Figure 4.2a).

This script works by analogy: an enlarged version of the image is to the

image as the image is to a reduced version of the image. Texture transfer

is used, where the texture is the input image, the texture map is the

input image reduced in size and then restored to its original size (thus

losing high frequency components), and the output map is an enlarged

version of the input. The script uses a combination of the GIMP’s image

scaling function and the best-fit plug-in.

A second script was written to delete a selected region by synthesizing

surrounding texture on top of it (Figure 4.2b). The input texture is

simply a ring of specified thickness about the selection. Figure 4.3 shows

an example of this script in use.

4.1 Discussion

There is frequently a gap between the advanced algorithms published in

computer graphics journals and the less advanced tools available to

non-technical users. The availability of this best-fit implementation has

generated considerable interest and positive feedback from users of the

GIMP.

Ideally “advanced” tools such as this should disappear into the

background, doing their job without making a fuss about their

cleverness. The plug-in just described is an everyday tool for everyday

tasks.
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Figure 4.3: Remove-selection script in action.



Chapter 5

Patchwork texture synthesis

Many texture synthesis techniques copy large sections of the sample

texture to the output. This can be seen, for example, in the results of

the best-fit method (including the variant described in Chapter 3). A

number of texture synthesis methods make the copying process explicit.

For example, in Efros and Freeman’s “Image Quilting” method [Efros

and Freeman, 2001, Liang et al., 2001] an overlapping grid of tiles is

produced. Each tile is simply copied from the sample texture. Tiles are

chosen so that their overlapping regions match as closely as possible.

The Chaos Mosaic method of Xu et al. [2000] takes the idea of copying

from the sample texture one step further, with tiles chosen at random

from the sample texture randomly pasted onto the output image. No

attempt is made to match tiles to each other. Feathering is used to try

to disguise tile borders. However, as shall be shown in this chapter,

feathering produces visible artifacts.

This chapter examines whether copying random sections of a sample

texture is all that is necessary for texture synthesis. A simple method of

texture synthesis is proposed, based on random copying. The texture

synthesis method is applied to images and to video. Its extension to
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texture transfer is also described.

5.1 Method

The texture synthesis method presented in this chapter simply copies

random patches of the input to the output, so that the output is

completely covered. The edges of these patches are blended together so

as to be invisible.

The difficulty lies in making edges within the output invisible. Several

types of edges are illustrated in Figure 5.1. As can be seen, a sharp

transition (Figure 5.1a) is clearly visible, while a gradual transition

(Figure 5.1b) looks duller than the original texture. This kind of

transition, sometimes called feathering, was used by Xu et al. [Xu et al.,

2000] in their “Chaos Mosaic” texture synthesis method. This dullness

can be removed by controlling the standard deviation of pixels in the

transition (as described in the next section), producing an invisible join

(Figure 5.1c).

An irregular pattern of patches is used, as the human eye is skilled at

discerning regular patterns. A Voronoi diagram, based on a set of

randomly chosen points, produces a patchwork that is sufficiently

irregular.

5.2 Image texture synthesis

In this section, texture synthesis on images is considered. Symbols used

in this section are listed in Table 5.1.

First, define the Voronoi cells that are to be used as patches. Choose n
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(a)

(b)

(c)

Figure 5.1: Joining one texture patch to another by (a) a sharp tran-
sition, (b) a gradual transition and (c) a gradual transition controlling
for standard deviation.

O(x) Output image
I(x) Input image

pi A set of points in the output image
qi A set of points in the input image
f Parameter specifying patch border sharpness

d(a, b) Euclidean distance between points a and b

Table 5.1: List of symbols.
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(a) (b) (c)

Figure 5.2: Example of patch shapes about the points pi for (a) f = 2,
(b) f = 6 and (c) f = 20

points pi in the output image O(x). The points pi form the centers of

Voronoi cells, and should be chosen to cover the output evenly. One

simple way to achieve this is to choose jittered grid points. The size of

the grid determines the approximate size of each cell, as well as the

number of points required.

Also choose n points qi from the input image I(x) at random. These are

used to specify the part of the texture sample copied into each patch.

The points must be chosen such that for all points x in or near the

Voronoi cell of pi the point x− pi + qi lies within the input image. This

is necessary to ensure that the portion of the texture sample copied to

each patch lies within the texture sample’s border.

Let d((x1, y1), (x2, y2)) be the Euclidean distance between two points.

Let a be the average colour of the input image. Let f be a parameter

defining the sharpness of the edges of the patches (the effect of this

parameter is illustrated in Figure 5.2). Assign each Voronoi cell a weight

wi(x) at each point x in the output image

wi(x) = d(x, pi)
−f (5.1)

Then the value of each pixel in the output image is calculated using
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O(x) =

∑n
i=1(I(x− pi + qi)− a)wi(x)√∑n

i=1 wi(x)2
+ a (5.2)

In this equation, the divisor rescales the result so that its standard

deviation is the same as that of the input image. Subtracting out and

then adding back the average a ensures that the output image has the

same average colour as the input. For efficiency, terms with small weight

may be omitted from the summations.

5.2.1 Results

The test suite of images (Figure A.1) was used to test the image

synthesis technique. The results of synthesis are shown in Figure 5.3.

Many of the synthesized textures (S1, S2, C1, E1, E2, E3) do not

contain any obvious artifacts and are not obviously synthetic. However,

there is a tendency for large scale structure in the input to be lost,

producing somewhat fragmentary or “busy” results. Best results were

obtained where the texture did not have large structures, such as objects

(C3), cracks (C2, C4), or tiling elements (T1, T2). Random choice of

patches is therefore not sufficient for synthesis of all textures, but is

practical for a subset of textures.
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S1 S2 C1

C2 C3 C4

E1 E2 E3

T1 T2

N1 N2 N3

Figure 5.3: Results with f = 6, and a grid size of 64 pixels.
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5.2.2 GIMP integration

The essential part of the method described in this chapter is the

disguising of edges by controlling the standard deviation of pixel values.

The GIMP, as with most image manipulation programs, uses alpha

blending. As discussed earlier, this produces a result with reduced

standard deviation. The effect can be removed by slightly altering one of

the layers based on the alpha values, as shall now be shown.

Let c1 and c2 be the upper and lower layers being blended respectively, α

the alpha value, and cavg the average colour of the upper layer. The

standard method of alpha blending is

cout = c1α + c2(1− α) (5.3)

with cout having standard deviation

σout = σin

√
α2 + (1− α)2 (5.4)

Thus σout will be less then σin for α values not equal to zero or one. c1

can be rescaled by a factor f to counteract this effect. It is required that

σout = σin, so

σin = σin

√
f 2α2 + (1− α)2 (5.5)

producing a scaling factor of

f =

√
2

α
− 1 (5.6)
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Figure 5.4: Patchwork synthesis script.

The correction is therefore to change the value of c1 as follows:

c1 ← f(c1 − cavg) + cavg (5.7)

A 175 line C plug-in was written to provide this. It can be obtained

from http://www.logarithmic.net/pfh/thesis (or the CD

accompanying this dissertation). In combination with the GIMP’s built

in facility for alpha blending and copying and pasting feathered

selections, this provides a method for rearranging parts of an image

without modifying its texture.

One problem with this approach is that the colour can be rescaled below

zero or above the maximum allowed brightness, and thus need to be

clipped. Ideally, clipping would occur after alpha blending. This would

require a modification to the GIMP itself, rather than a plug-in.

A simple script was written to synthesize textures by randomly copying

and pasting feathered selections from a texture to a new image, making

use of the plug-in (Figure 5.4). The results are similar to those seen in

Figure 5.3.
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patch-method-1.mpg patch-method-2.mpg
(a) (b)

Figure 5.5: Video cubes illustrating the cell shapes of two different
video synthesis methods (the vertical axis is time). These videos may
be obtained from http://www.logarithmic.net/pfh/thesis (or the CD
accompanying this dissertation).

5.3 Video texture synthesis

In this section, the texture synthesis method is extended to video. The

obvious way to approach video texture synthesis is to treat the temporal

dimension as just another spatial dimension, producing a three

dimensional mosaic of patches. This is illustrated in Figure 5.5a. It has

the drawback that any static elements in the video will become transient

in the output. It is therefore proposed to treat the time dimension

separately. Patches are fixed between frames, and a separate

compositing step is performed in the time dimension, as illustrated in

Figure 5.5b. This will preserve any static elements in the texture.

The video texture synthesis method consists of two stages. In the first

stage, a set of video sequences are constructed from frames of the input

video. In these intermediate sequences, no re-arrangement within each

frame takes place, just a re-arrangement of the frames themselves. In the

second stage, each frame of the output sequence is constructed from the

corresponding frames of the intermediate sequences, using the image

synthesis method described earlier in this chapter.

To generate each intermediate sequence, n frames pi are first chosen in

the intermediate sequence, and n corresponding frames qi are chosen in
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the input sequence. The intermediate sequence is generated as a series of

transitions between each frame pi and its successor pi+1.

First, define weights for a smooth transition between pi and pi+1

w1 =
1

2
+

1

2
cos(πu) (5.8)

w2 =
1

2
− 1

2
cos(πu) (5.9)

where u is the position within the interval [pi, pi+1]

u =
t− pi

pi+1 − pi

(5.10)

Also calculate the average value of each pixel in the input sequence over

time, forming an average image A(x). Then the intermediate sequence

N(x, t) may be synthesized from the input sequence I(x, t) within the

interval using

N(x, t) =
w1I(x, t− pi + qi) + w2I(x, t− pi+1 + qi+1)− A(x)√

w2
1 + w2

2

+ A(x)

(5.11)

In this equation, each pixel in each intermediate frame is produced by

combining pixels from two source sequences. The standard deviation of

each pixel is preserved in the result.

Piecing all the intervals together gives a full intermediate sequence.

The output sequence is generated from a set of intermediate sequences.

Each frame of the output is constructed by piecing together patches

sampled from the corresponding frames of the intermediate sequences as
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leaves.mpg clouds.mpg fire.mpg

leaves-patched.mpg clouds-patched.mpg fire-patched.mpg

Figure 5.6: Input video cubes (top row) and corresponding synthetic
video cubes (bottom row). These videos may be downloaded from
http://www.logarithmic.net/pfh/thesis (or the CD accompanying
this dissertation).

in the image synthesis method. Each intermediate frame contributes one

patch to the output frame. Each frame in the output is synthesized

using the same arrangement of patches.

For efficiency the two stages of synthesis can be combined, so that the

pixel values in the intermediate sequences are only ever calculated as

needed.

5.3.1 Results

Results are shown in Figure 5.6. All results are tilable video loops. The

first video produced good results. That is, there are no obvious artifacts

and the video is not obviously synthetic. The second was less

satisfactory, the patches are clearly visible. This is because the

movement of the clouds reveals the pattern of patches. The third video

also produced reasonable results, although there are some artifacts where

bright flame occurred at the edge of a patch.
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5.4 Texture transfer

In this section, the texture synthesis method described in the previous

sections will be extended to texture transfer. This will first be described

in the domain of images, then generalized to video.

To perform texture transfer, two images are required. As before, a

texture image is required (I(x)). Additionally a pattern image is

necessary (P (x)). The pattern image defines the pattern of texture

desired in the output. For example, by using a painting as the image

texture and a photograph as the pattern image a synthetic painting of

the photograph could be created.

Patches are again defined in terms of a Voronoi diagram. However, the

points qi in the input texture are no longer chosen randomly. Instead,

each is chosen to minimize the sum of squared differences between the

patch of the pattern image around pi and the patch of input texture

around qi.

Finding the exact best match to each patch often means that a

particular area of the texture sample is repeated many times in the

output. A solution to this problem is to consider only a random subset

of points in the image as possibilities for each point qi. This also yields a

substantial speed increase.

The output to be synthesized is no longer homogeneous. The average

pixel value varies from place to place. During synthesis this means that

rather than using an overall average, a localized average must be used.

One way to do this is to calculate an average ai of each patch. The

output can then be calculated from

O(x) =

∑n
i=1(I(x− pi + qi)− ai)wi(x)√∑n

i=1 wi(x)2
+

∑n
i=1 aiwi(x)∑n
i=1 wi(x)

(5.12)
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This is very similar to Equation 5.2, the only difference being the

calculation of the average.

This transfer technique may also be applied to video. For example, to

produce an image with animated texture, the pattern image P (x) might

be matched against the average frame A(x). The video texture synthesis

method described in section 5.3 can then be applied.

5.4.1 Results

Results are shown in Figure 5.7, based on the texture transfer test-suite

(Figure A.2). As a pre-processing step, the pattern images were rescaled

so that they had the same average colour and colour range as the texture

images. These images took longer to produce than the texture synthesis

images, as selecting each patch required searching the texture image.

As with the best-fit method, reducing the dimensionality of the search

space can be used to improve results (see Section 3.3.1). The texture

and pattern used for texture transfer were reduced to gray-scale images

before texture transfer, and the original colour from the pattern image

reapplied to the output. This produced the results in Figure 5.8.

An example of video texture transfer is shown in Figure 5.9. The texture

used was the video of leaves in Figure 5.6.
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S1
I1

S1
I2

S2
I1

S2
I2

Figure 5.7: Texture transfer with f = 2, and a grid size of 16 pixels.



Chapter 5 Patchwork texture synthesis 73

S1
I1

S1
I2

S2
I1

S2
I2

Figure 5.8: Texture transfer with colour copied directly from pat-
tern.
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tt.mpg

Figure 5.9: Example of video texture transfer. This video may be
downloaded from http://www.logarithmic.net/pfh/thesis (or the CD
accompanying this dissertation).

5.5 Discussion

The main contribution of this chapter is the method of blending edges

invisibly. The texture synthesis technique described in this chapter is

simple and fast, and gives good results for many textures.

Would the technique be improved by choosing the patches more

carefully, as in image quilting [Efros and Freeman, 2001]? Interestingly,

the answer is no. The method used to disguise edges relies on patches

being uncorrelated. If patches are chosen so that they are correlated, the

edges will be over-emphasized and become visible.

At the start of this chapter it was noted that many texture synthesis

methods copy sections of the input, either implicitly or explicitly. If this

property is considered separately from the selection of the patches that

are copied, their relative importance can be compared. In the technique

described in this chapter, the selection of patches was random. Excellent

results were obtained with some textures, but others produced poorer

results. In particular, tiling patterns and textures with distinct objects

produced poor results. It can therefore be concluded that best-fit
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selection of patches can only improve textures such as these.

This chapter and the preceding ones have described methods of creating

new images with a given texture. The next chapter looks at the

restoration of the texture of existing images where that texture has been

degraded by noise.



Chapter 6

Plausible restoration of noisy

images

The values of pixels in an image may, for various reasons, be known only

imprecisely. If so, the texture of that image may be used to help

estimate the true pixel values. In a textured image the value of one pixel

may give clues as to the values of other pixels. This chapter describes

how a texture model may be used to find the most likely pixel values of

an image, where only upper and lower bounds on these values are

known. A variant that can remove Gaussian noise is also described.

Imprecise knowledge of an image usually takes the form of an image with

additive noise. This noise might be generated as a result of storing an

image in a lossy format such as JPEG or GIF, introduced while

converting it from analogue to digital form, or produced by an analogue

device. The amount of noise may depend on the position in the image,

or even the content of the image. Restoration of images stored in lossy

formats is of particular interest, given the large number of these images

that now exist (for example, on the World-Wide Web).

The novel feature introduced in this chapter, as compared to other
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methods of noise removal, is the use of complex texture models tailored

to each individual image. The kind of textural details seen in an

un-degraded part of an image may reasonably be expected to occur in

degraded parts. Texture that occurs in the form of large variations may

also occur in small details occluded by noise. These ideas can be

expressed in terms of texture modelling, allowing more accurate

restoration of images.

To attempt removal of additive noise from an image, two things must

first be stated:

1. The set of possible values for each pixel, and how likely each of

these values is (in other words, the amount and nature of noise).

2. The ways in which pixels may be related to one another (in other

words, what kinds of texture the image may have).

Given these two statements, the most likely image and image texture

may be found.1 The way the two statements are made is crucial. They

must be precise enough that the result is useful, but must also be stated

in a way that affords computation of the result in reasonable time. The

difficulty lies in finding a useful trade-off between these two constraints.

As was noted in Section 2.3.2 of the literature review, most methods of

noise removal dull the image. The method described here (as with that

of Meyer and Tischer [1998]) will not always dull images. While it uses a

texture model, it does not require this model to be specified a priori.

The method is simple in form, and is applicable to the general problem

of additive noise removal.

The method of this chapter uses the following choice of statements:

1Most existing noise removal techniques (see Section 2.3.2) can be defined by two
statements of this form, though this is often not done explicitly.
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1. Each pixel value lies within a specific range, but is equally likely to

take any value within that range.

2. The image has texture that may be described in terms of causal

prediction.

The next two sections detail and justify this choice.

6.1 Pixel values

Each pixel value is taken to lie within a specific range, but to be equally

likely to take any value within that range. This choice does not compete

with the texture model to explain small variations, where noise will

mean that almost nothing is known anyway. However it totally rules out

consideration of large changes to pixel values, so the texture model need

not model large changes, such as edges, with total accuracy.

The pixel ranges may be unbounded on one or both sides. For example,

a photograph may have been over-exposed when it was taken (the

amount of light incident on some areas of the film exceeding the film’s

range of measurement). Within regions of over-exposure it is known only

that the true pixel values exceed a certain amount. There may also be

artifacts such as spots obscuring parts of the image. A pixel within this

kind of area may be considered to be equally likely to take any value.

(This is similar to the technique for erasing objects from images

described in Chapter 3. Unlike the technique of Chapter 3 the result

may exceed the dynamic range of the input texture sample.)
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6.2 The texture model

Given that an image has a certain texture, a texture model specifies the

likelihood of each possible assignment of pixel values to that image. Let

I be an assignment of pixel values to an image with texture model M .

The most likely texture and pixel values are sought, P (M, I) is to be

maximized:

P (M, I) = P (M)P (I|M) (6.1)

If it is assumed each model is equally likely, P (M) is constant and

maximizing P (I|M) will maximize P (M, I). This is the well known

Maximum Likelihood method [Press et al., 1992, pp. 658].

If an ordering of pixels in the image is chosen (for example, raster scan

order), P (I|M) may be written in terms of the conditional probability of

each pixel taking a certain value given the preceding pixel values and the

texture model:

P (I|M) =
∏
i

P (pixeli|M, pixel0, pixel1, · · · , pixeli−1) (6.2)

A way to compute the likelihood of a pixel value given the preceding

pixels’s values in an ordering therefore constitutes a texture model.

The predicted distribution of pixel values is taken to be Gaussian with

constant variance. With this assumption we need only estimate the

mean expected value of each pixel, and the Maximum Likelihood method

becomes equivalent to the method of Least Squares (the derivation of

this equivalence was given in Chapter 3, or see Press et al. [1992, pp.

657–659]). Least Squares requires minimization of the sum of squared

differences between a set of predicted and actual values. This sum is
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called a “merit function”.

The specific predictor used in this chapter is a weighted sum of a set of

values computed from neighbours of the pixel that are in its “past”, with

the pixels being ordered in a raster scan. The values might simply be the

values of the pixel’s past neighbours (producing a linear predictor).

Other values might result from multiplying several values together, or

applying some non-linear function to a value, or combining values in

some other way. With sufficient values, any function of the anti-causal

neighbours may be approximated to arbitrary accuracy with a weighted

sum such as this.

Let V1(s) . . . Vn(s) be the set of values used for prediction of the pixel

I(s), and w1 . . . wn be the corresponding weights. The predictor is:

p(s) = w1V1(s) + w2V2(s) · · ·+ wnVn(s) (6.3)

When calculating the values Vn at the edges of the image, the well

known reflection technique may be used. If the image is tilable, tiling

may be used instead.

The merit function is:

∑
s∈ΩI

(I(s)− p(s))2 (6.4)

The weights of the model wi and the pixel values I(s) (within the

specified bounds) are chosen so as to minimize this merit function.
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6.3 Minimization algorithm

The merit function may be minimized numerically. An arbitrary initial

image is chosen (within the specified bounds on each pixel), then a two

step process is followed: first an optimum model is found given the

current image, then an improved image is found given that model. This

process is iterated until it converges.

In the first step, the optimum model for the current image may be found

precisely. When minimized, the merit function will have zero partial

derivative with respect to each model weight. Each partial derivative is a

linear function of the model weights. Equating each derivative to zero

gives a set of linear equations. These may be solved to find the optimum

model.

In the second step the optimum image is approximated numerically, as

finding the optimum analytically is difficult. A multigrid method is used,

as described in Press et al. [1992, pp. 871–887 ]. First a scaled down

image of the input is optimized, then successively larger versions. At

each scale the optimization is performed via gradient descent.

The multigrid method is necessary so that large features can be

optimized within a reasonable time. For example, gradients that have

been converted to a series of steps by palettization (as in Figure 6.3)

would take a long time to optimize at maximum scale.

Three images undergo scaling: an image of the minimum possible values,

an image of the maximum possible values, and the current best estimate

of the optimum image. The best-estimate image is scaled up by means of

bi-linear interpolation, and scaled down by its adjoint operator, as in

Press et al. [1992, pp. 875–876]. The minimum and maximum images

only ever need to be scaled down, as they are never modified. When

scaling down the minimum image, each pixel in the scaled down image
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Figure 6.1: Grid positions when scaling an image. A pixel in the
coarser grid has been highlighted in dark gray, and the pixels it
overlaps in the finer grid highlighted in light gray.

takes the maximum of the nine pixels it overlaps in the original image

(as illustrated in Figure 6.1). Similarly each pixel in the scaled down

maximum image takes the minimum of the nine pixels it overlaps in the

original. Where the value of a scaled down minimum pixel exceeds the

value of its corresponding scaled down maximum, both are replaced by

the value of the corresponding scaled down best-estimate pixel.

This method of scaling ensures that pixels in the best-estimate image

almost never scale up to a value outside of the bounds posed by the

minimum and maximum images. While this method is ad-hoc it should

not affect the outcome, as the final step is to optimize the image at its

original scale.

6.4 Results

The standard “Lena” image [Sjööblom, 1972] was used to test the

method. Four different versions of Lena were used:

A. Lena encoded with a palette of only 16 gray levels. The levels were

evenly spaced and the image was not dithered.
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Figure 6.2: Neighbours of a pixel used by the predictor.

B. Lena over-compressed using JPEG, with only 0.385 bits per pixel.

C. Lena with simulated over-exposure. Pixel values exceeding

three-quarters of the maximum brightness were clipped.

D. Lena with missing areas.

The texture model used was based on the seventeen neighbours shown in

Figure 6.2. The values used by the predictor were: a constant, the value

of each neighbour, the result of multiplying the values of each possible

pairing of the neighbours (including multiplication of a neighbour by

itself), and the result of multiplying the values of each possible triple of

neighbours (including cubing of a neighbour, and multiplication of the

square of a neighbour by another neighbour). This set of values allows

the predictor to take the form of any cubic function of the neighbours’s

values. The predictor had a total of 1140 terms.

In case A, the true pixel values could vary from those of the image by up

to 1
32

of its total dynamic range. The input and result are shown in

Figure 6.3. As can be seen, the distinct levels of the input image have

been smoothed into continuous gradients. With the exception of some

fine texture in the hat, the detail of the original image has been well

preserved. Note, for example, that edges in the image remain sharp.

In case B (Figure 6.4), the distortion is especially visible near the edges

of the 8× 8 Discrete Cosine Transform blocks used by JPEG. The range

of variation was therefore set higher in the edge pixels of each block than
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Input image Result

A 34.29 34.92
B 33.73 33.15
C 34.41 37.39
D 29.01

Table 6.1: PSNR in decibels, as compared to the original Lena im-
age.

the other pixels, and higher still in the corner pixels. Pixels in the

corners were allowed to vary by up to 12% of the image’s total dynamic

range, pixels on the edges were allowed to vary by 8%, and the

remaining pixels 4%. In the result, the “blockiness” of the input has

been largely removed. Better results could undoubtedly be obtained by

more accurately modelling JPEG quantization.

In case C (Figure 6.5), the uncertainty lies in the value of pixels in the

over-exposed regions. In these regions the pixels could originally have

had any value brighter than their current value. The reconstruction is

not perfect, but is a definite improvement on the clipped image. The

reconstruction of a fine light edge about the bottom and rear of the hat

is a notable success (see the detail image), as is the reconstruction of

Lena’s left eye.

In case D (Figure 6.6), pixel values in the missing regions may have any

value. The overall structure of restored areas is reasonably plausible, but

they are implausibly smooth and therefore stand out. It has also failed

to extend sharp edges into the restored areas. Also shown in the figure is

the result of using the best-fit synthesis technique described in

Chapter 3. This highlights the difference between the most likely

restoration and a randomly sampled “plausible” restoration. The best-fit

method has invented details that are plausible in textural terms, and is

also appropriately rough.
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Input Result

detail: detail:

Figure 6.3: Input and result for test case A.

The Peak-Signal to Noise Ratio2 for each case is listed in Table 6.1.

Though only an approximation of the perceived image degradation

[Bhaskaran and Konstantinides, 1995, pp. 9], the PSNR is a simple and

objective measure. The PSNR improved slightly for image A, and

substantially for image C. The PSNR of Image B was slightly reduced.

A better model of the JPEG quantization algorithm may produce better

results.

2For 8-bit per pixel images having a noise of standard deviation σ, the PSNR in
decibels is 20 log10

255
σ .
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Input Result

detail: detail:

Figure 6.4: Input and result for test case B.
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Input Result

detail: detail:

Figure 6.5: Input and result for test case C.
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Input Result

Best-fit synthesis result

Figure 6.6: Input and result for test case D, and for comparison the
result of applying the best-fit technique of Chapter 3.
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6.5 A variant for the removal of Gaussian

noise

Suppose we have an image with noise added from a uniform Gaussian

noise source of known variance.3 When finding the most likely true

image, the variance of the noise at each pixel must be constrained to not

exceed the variance of the noise source (the noise in the image is the

difference between the true image and the noisy input image).

We can not calculate the variance of noise at a pixel in the image

exactly, but we may estimate it from the values of surrounding pixels.

To produce this estimate, a convolution of the squared noise image by a

Gaussian kernel is performed. This convolved image is then constrained

to at no point exceed the variance of the noise source.4 A kernel of size

σ = 8 was found to give good results.

As in the previous section, gradient descent was used to find the most

likely image. The noise within each pixel being independent of

surrounding pixels, a multi-scalar method need not be used. After each

step of the descent, where the estimated variance of a pixel exceeds the

variance of the noise source the pixel value is scaled such that its

variance equals that of the noise source.

3This is a well studied problem in the field of Image Processing, and applying the
algorithm of this chapter to it allows comparison with other noise removal algorithms.
However the main intent of this chapter is the framing of a qualitatively different
problem, “plausible restoration”, rather than further investigation of well studied noise
removal problems.

4This assertion that the noise is uniform is necessary because the texture model does
not take into account that some areas of the image may be more variable than others.
A better solution would be to simply constrain the overall variance of the noise, while
extending the texture model to include variations in the amount of variation. However,
it is not clear how to pose such a texture model in a form that may be optimized within
a reasonable time.
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6.5.1 Results

The same neighbourhood and predictor terms were used as before. The

version of Lena used was the same as that in Portilla et al. [2003]

(available from http://decsai.ugr.es/~javier/denoise). Portilla

et al. [2003] have confirmed that this version is the same as that used in

a number of other recent papers. The image is 8-bit per pixel, with 256

possible gray levels.

Results are shown in Figures 6.7 and 6.8. It can be seen that the method

has preserved sharp edges well, and has not introduced artifacts into the

image, although in Figure 6.8 there are some patches where noise has

not been sufficiently removed, giving a blotchy appearance.

The resulting PSNR for various levels of noise is listed in Table 6.2.

Results obtained by Portilla et al. [2003]’s steerable pyramid based noise

removal algorithm are listed for comparison (this is the best existing

Gaussian noise removal algorithm, by this metric, to the author’s

knowledge). The method described here is not as good as Portilla et al.’s

in terms of PSNR. Note however that Portilla et al.’s method introduces

some slight ringing-type artifacts5, whereas the one described here does

not. In general, steerable pyramid methods are biassed towards

interpreting variations in an image as features from the pyramid, and

tend to sometimes infer these features where they are not present.

5See http://decsai.ugr.es/~javier/denoise/examples/simulated_noisy.
htm.
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σ Input image Result Portilla et al.

10 28.12 34.75 35.61
15 24.61 32.82 33.90
20 22.12 31.31 32.66
25 20.22 30.09 31.69

Table 6.2: PSNR in decibels for the removal of various levels of
Gaussian noise. Results obtained by Portilla et al. [2003] are listed
for comparison.

Input Result

detail: detail:

Figure 6.7: Input and result for Gaussian noise, σ = 10.
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Input Result

detail: detail:

Figure 6.8: Input and result for Gaussian noise, σ = 25.
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6.6 Discussion

The main limitation on the complexity of model used in this chapter was

the available computing power. Were unlimited computing power

available, a larger neighbourhood and higher-order terms would almost

certainly yield further improvement. Every pixel and its causal

neighbourhood in an image represents an observation of the image’s

texture, and an image of (say) 512× 512 pixels contains a great many

such observations, so a texture model with a great many terms can be

supported without danger of over-fitting.

Previous methods of noise removal have adapted their model of texture

to images in simple ways, limiting their ability to restore features that

are unique to a particular image. The method given here does not have

this limitation. Increasing the order of the texture model should allow

further improvements.

While it has many more terms than previous models used for additive

noise removal, the texture model used here is not fully general. For full

generality, the texture model would need to be able to predict arbitrary

probability distributions. Specification and optimization of a model this

general is difficult. Lesser generalizations are possible, such as prediction

of the standard deviation of each pixel in addition to the expected value,

or use of robust merit functions based on L1, Huber functions (as in

Rudin et al. [1992] and Llados-Bernaus et al. [1998]), or the Cauchy

based metric derived in Chapter 3.

An image restoration technique that can invent details is slightly

dangerous. In places where restoration must be reliable, such as

medicine or the military, such a method should only be used with care.

However, a technique that tailors itself to an image to better restore its

specifics may provide enhancements otherwise impossible, which could



Chapter 6 Plausible restoration of noisy images 94

be crucial in these places.

If compression artifacts can be removed as they were in this chapter, is

lossy compression easy? The standard assumption has been that lossy

compression requires a detailed model of human perception, taking into

account phenomena such as masking. What if compression artifacts arise

simply because the decoder produces images that lack textural

self-consistency, and that human perception is sensitive to this? Were

decoders to produce more plausible images given limited information,

detailed modelling of perception might become unimportant. The lossy

aspect of lossy compression might reduce to a simple form of

quantization, and the well-studied techniques of lossless compression

could be applied. This is, of course, highly speculative.

The method described in this chapter represents a generic method for

filling in gaps where a set of data has missing elements or is only known

imprecisely. It might, for example, be transferred to the audio domain to

reconstruct noisy or clipped recordings, or be applied to other time series

data.



Chapter 7

Declarative texture synthesis

Previous chapters have examined texture operations based on

synthesizing texture given a sample. This chapter looks at how an

interesting class of textures may be designed using rules specifying which

elements in a pattern may be adjacent to one another. This is a slight

detour from the main thrust of this dissertation, which is concerned with

texture operations that model texture based on a sample of that texture,

but serves to place certain curious features of the best-fit synthesis

method in a wider context.

The approach of this chapter is to procedural texture synthesis as

declarative programming languages are to procedural programming

languages, and might therefore be called “declarative texture synthesis”.

In a procedural language, one specifies a step-by-step procedure by

which some output may be produced. In a declarative language, one

specifies a set of rules which constrain the output, and it is possible for

there to be multiple outputs. Similarly procedural texture synthesis

requires a step-by-step procedure for producing the texture to be

specified, whereas “declarative” texture synthesis requires a set of rules

that constrain the texture that may be produced.

95
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The specific type of rules considered here are specifications of a set of

tiles which are to be assembled into a pattern. Some rules will lead to

many possible results, some to just one possible result, and some to none

at all. If there are many possible results, one is chosen at random.

How simple can local rules of interactions be made, while still producing

interesting large-scale structure? The best-fit synthesis method bears

some resemblance to the assembling of a jigsaw puzzle, in that it involves

the fitting together of many small patches of pixels. If best-fit synthesis

is like a jigsaw puzzle, it is one with many different pieces, and it is not

therefore surprising that the results also can be complex. However, it is

shown in this chapter that even simple jigsaw pieces can result in

surprisingly complex forms.

7.1 Specification of the problem domain

The objective is to find a connected structure composed only of pieces

from a specified set. Pieces are based on squares or hexagons with edges

of various types. An edge of a certain type may only abut edges of some

other certain type. Some edges of a piece may be “empty”, and these

edges do not need to abut another piece. All other edges must abut an

appropriate opposite edge. Pieces may be rotated, but not flipped.

There are two possible types of edge:

• Like-compatible edges. These edges must abut another edge of the

same type, and will be denoted by numbers (1, 2, 3, . . . ). “-” shall

denote an empty edge, which can also be seen as “like compatible”.

• Opposite-compatible edges. These edges must abut some different

type of edge, and will be denoted by letters, with each lower case
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letter compatible only with its corresponding upper-case (a, A, b,

B, c, C, . . . ).

A piece may be fully specified by a string listing its edges in clockwise

order. For example, --AaAa.

Were pieces of this type to be used in a physical jigsaw-like puzzle, edges

might be shaped as in Figure 7.1. Alternatively, an appropriate

arrangement of magnetic or electrical charges on each edge could be used

to ensure each edge type connects only to its intended other. If

subjected to random impulses of an appropriate magnitude such pieces

would, eventually, self-assemble. This would be interesting to attempt at

a molecular scale (see also Wolfram [2002, pp. 1193]).

Figure 7.1: The two types of edge, as jigsaw-puzzle type joins.

7.1.1 Relation to Markov Random Fields

Arrangement of tiles depends only on local interactions (the edges of tiles

must match), and may be used to define a Markov Random Field. The

likelihood of a particular tile being placed at a particular location could

be set to either zero, if the tile does not match surrounding edges, or one

divided by the number of tiles that could potentially be placed at that

location. Similarly the likelihood of an assemblage (of some given size)
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will be zero if there are edges that do not match, and non-zero otherwise.

7.2 Literature review

This chapter has one foot in the theoretical topic of tiling patterns, and

the other in the practical field of procedural texture synthesis. Some

surprising results from the field of tiling patterns will first be reviewed.

A brief overview of procedural texture synthesis will then be given.

7.2.1 Tiling patterns

Before the invention of the modern techniques of procedural texture

synthesis and tiling of images, one of the most common forms of

texturing was tiling patterns produced from small sets of tiles. Such

patterns were almost universally repeating patterns, though sometimes

of great intricacy.

It is now known that there exist tile sets that may be used to cover the

plane, but for which there are no arrangements of tiles that form a

repeating pattern. This has particularly been studied in the context of

“Wang tiles”. Wang tiles are much like the tile sets considered in this

chapter, but with the additional restrictions that the tiles are square,

and may not be rotated.1 The smallest known set of Wang tiles that

force non-repetition was found by Culik [1996], and contains 13 tiles.2

1Careful choice of edge types allows one to force all tiles to follow a consistent
orientation, so this is really a sub-set of the tile sets considered here.

2A somewhat pointless application of Wang tiles to texture synthesis was described
by Cohen et al. [2003], in which each tile is decorated with an image who’s borders
match those of the tiles that may abut it. This can be used to generate infinite, non-
repeating texture. But so can a smaller set of tiles, so long as the edge constraints allow
some randomness in the choice of tiles. It is easy for a tile set to allow non-repeating
patterns, the difficulty lies only in forcing non-repetition.
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If rotation and arbitrarily shaped tiles are allowed, tile sets that force

non-repetition containing as few as two tiles are known. Penrose’s “kites

and darts” are a well known example of this [Grünbaum and Shephard,

1987, pp.531]. It may be possible for a single tile to force non-repetitive

tiling, but no tile is currently known that has this property.

Once one realizes that non-repetitive tile sets are possible, one quickly

also realizes that there are tile set analogues for all kinds of systems.

Wang tile sets have been described that find prime numbers, enumerate

the Fibonacci sequence, and simulate Turing machines and cellular

automata [Grünbaum and Shephard, 1987, pp.604–606]. The ability of

Wang tiles to simulate Turing machines shows that assembly of tile sets

is a form of universal computation.

We may then ask whether randomly chosen tile sets commonly lead to

complex computations, or whether this is simply a pathological case.

This is a question not of existence but of likelihood, and requires

computational experiments rather than mathematical deduction, a form

of investigation championed by Stephen Wolfram [2002]. Much of what

Wolfram has to say is relevant to this chapter, so his theories will now be

described in some detail.

Wolfram examined the general behavior of many discrete systems using

computational experiments, though with a particular focus on “cellular

automata”, a form of causal Markov Random Field. The sheer breadth

of Wolfram’s investigations show that his observations have some

generality, and we may reasonably expect them to apply to tiling

patterns.

Wolfram found that an enumeration of the simplest possible rules for a

given class of system will commonly contain systems having surprisingly

diverse behaviors. He identifies four basic classes of behavior:
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1. Repetitive: The system repeats within a finite time.

2. Nested: The system produces a self-similar fractal pattern.

3. Autoplectic: The system produces pseudo-random output.

4. Complex: The system produces a diversity of behaviors.

Particle-like entities called “gliders”, with complex interaction

rules, often occur in such systems.3

Systems with more complex rules chosen at random were also found to

display these same classes of behavior. The complexity of the rules of a

system appeared to have little effect on the complexity of their behavior.

Wolfram is of the opinion that simple constraint systems rarely produce

interesting results. This is certainly true for the particular family of

constraint systems he investigated. He also argues that, although

constraint systems can be used to describe limiting states of causal

processes as time goes to infinity, such causal processes may take an

unreasonably long time to find such states, making constraint systems a

poor approximation to observed phenomena. For this reason, Wolfram

largely restricts himself to the study of causal systems. It is the author’s

opinion that while this is an important insight, writing off non-causal

systems completely is excessive.

7.2.2 Procedural texture synthesis

A common form of procedural texture synthesis is to define a function

mapping position to colour values (or sometimes heights on a bump

map). Different textures may be produced by different functions.

Regularly repeating textures may be produced by sums of sine waves, or

3In a cellular automaton, a glider is a pattern that repeats after some number of
time steps, offset some number of squares from its original position.
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of the position modulo some quantity, or functions thereof. Random

textures are commonly built from lattice noise functions. Lattice noise

functions interpolate between pseudo-random values (or values and

gradients) on a discrete grid, the pseudo-random values being calculated

by applying a hash function to their position. Such noise functions may

be summed over several scales to produce fractal noise, or may be used

to perturb the position parameter given to some other function to mimic

turbulence. A wide variety of natural looking textures can be built by

these means, including smoke, marble, wood, and, used as a height

function, mountainous terrain [Perlin, 1985, Ebert et al., 1994].

Which of Wolfram’s classes can be produced in this way (or mimicked

sufficiently well to fool the human eye)? Repetitive or nested texture is

straightforward to produce. Random textures that mimic autoplectic

phenomena are also straightforward to produce using lattice noise

functions. However creation of patterns that imitate textures from

Wolfram’s complex class is not computationally feasible, as these contain

long range correlations that are readily discerned visually, and the

texture function would need to recompute these correlations for every

point.

Such procedural textures are typically thought of as covering the entire

plane (or three dimensional space), and any given sample of texture is a

section cut or carved from this. There is no easy way to match the

details of one texture to another at a boundary. This is a drawback, as

textures in nature often merge into one another in interesting ways (for

example the boundary of growth of lichen on rock depending on the

texture of the rock, or the stem of a plant extending into a leaf in a

branching pattern).

More generally, a procedural texture may use some complex

pre-calculation before calculating the value of each pixel. Such
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generalized procedures are able to generate textures belonging to

Wolfram’s complex class. Examples of such pre-calculations are finding a

Voronoi diagram (in order to produce a texture containing cells), or

executing some number of iterations of a two dimensional cellular

automaton (such as a reaction diffusion system, to produce spots or

stripes [Turk, 1991]). They may also be used to produce textures that

blend one into the other [Zhang et al., 2003].

7.3 A tile assembler algorithm

Whether a set of tiles can be assembled into a consistent pattern is

undecidable, and within a finite area is NP-complete (see Wolfram [2002,

pp. 942]). There is therefore no algorithm that can guarantee to

assemble an arbitrary set of tiles within a reasonable time. However, an

algorithm can be devised that handles many common cases.

Assembly only within a finite area is attempted. The definition of the

problem allows us to say that tile placements must conform to a regular

grid, and only a finite set of locations need be considered. The algorithm

is as follows:

1. Place a randomly chosen tile in the center of the grid.

2. Make a list of empty locations in the grid with abutting non-empty

edges. If there are no such locations, halt. Otherwise, if there are

any sites where only either one or zero types of tile could be added,

restrict the list to just these sites. From the list, choose the

location closest to the center of the assemblage.

3. If there is no tile that fits at that location, or if it can be

determined that for any tile that might be added the assemblage

will become non-completable (see next section), perform
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backtracking. That is, remove some number of tiles from the

assemblage in the reverse order to which they were added (see the

section after next).

4. Otherwise choose a tile at random from the remaining possibilities,

and put it at the location.

5. Go to step 2.

An implementation of this algorithm is available from

http://www.logarithmic.net/pfh/thesis (or the CD accompanying

this dissertation).

7.3.1 Determining if a partial assemblage cannot be

completed

An empty cell will be part of a region of empty cells. Whether such a

region can ever be filled is completely determined by the edges abutting

it. To make use of this fact, a hash-table is kept of region boundaries

known not to be completable. If adding a certain tile will create a region

that is in this hash-table, adding that tile will make the assemblage

non-completable.

If it is determined that no tile can be added at some location, the region

that contains that location is added to the hash-table. This allows

progressively larger regions to be added to the hash-table, and also

prevents previous failures from being repeated.

7.3.2 How much to backtrack

In step 3, the assembler may need to backtrack by some number of tiles.

The problem may be in a tile added quite recently, in which case only a
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small amount of backtracking would be necessary, or in a tile added

much earlier, in which case a large portion of the assemblage may need

to be discarded.

In the absence of any procedure by which to determine a good number of

tiles to backtrack, the approach taken here was to backtrack by a

random amount. As we do not know even the scale on which to operate,

the amount chosen is sampled from a power-law distribution (power-law

distributions are scale-invariant). This ensures that if a large backtrack

is required the assembler will perform that backtrack within a reasonable

time (for example, in less than the lifetime of the universe).

The specific distribution used was:

P (n) ∝ (n + a)−b (7.1)

where n is the number of tiles to remove (n > 0, integer), and the

parameters a and b define the personality of the assembler. The

parameters affect how long the assembler will take to finish, and may

also bias the result towards the emergence of one or another kind of

feature. The parameter values used in this chapter were a = 0.35, b = 3.
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7.4 Results

7.4.1 Single-tile patterns

All possible tiles from some simple classes were tried, as shown in

Figures 7.2, 7.3, 7.4, and 7.5. Only tiles that could be arranged into a

self-consistent pattern are shown. Even with simple tiles, a great variety

of forms result.

Figure 7.2: Samples of patterns formed by all possible single square

tiles having a combination of empty and one type of like-compatible

edges.

Figure 7.3: Samples of patterns formed by all possible single square

tiles having a combination of empty and one type of opposite-

compatible edges.
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Figure 7.4: Samples of patterns formed by all possible single hexag-

onal tiles having a combination of empty and one type of like-

compatible edges.

Figure 7.5: Samples of patterns formed by all possible single hexag-

onal tiles having a combination of empty and one type of opposite-

compatible edges.

As might be expected, regular tilings of various kinds can be seen (1111,

AAaa, AaAa, 1-1-1-, 11111, AA-aa-, AAa-a--, Aa-Aa-, AaA-a-, AaAaAa,

aAA-a-, aAAa--).

Some tiles form patterns of finite size (1---, Aa--, 1-----, Aa----,

A-a---).

A--a-- and 1--1-- are analogous to simple gliders. If one dimension
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were to be arbitrarily interpreted as time, these would appear as a single

moving tile.

Various forms of randomness can be seen. This is true randomness, not

Wolfram’s “autoplectic” pseudo-randomness. 11--, and 1-1--- follow

random paths (which may form closed loops). 111--- forms two kinds of

composite units, one with two exposed edges and one with three exposed

edges. A random network results, in which the three-edge units are

nodes and the two-edge units form random paths between these nodes.

111- produces rectangles of random size and shape. 1111-- produces

triangles of random size and orientation. AaAa-- produces triangles of

random size, but of only one orientation. AaAa-- turns out to be related

to the Sierpinski Triangle fractal, as will be seen in the next section.

7.4.2 Further tile sets of interest

Certain tile sets require a great deal of back-tracking on the part of the

assembler. These tile sets are often also visually interesting. Two such

sets are shown in Figure 7.6. The set on the left yields patterns with

interesting local mirror symmetries.

Figure 7.6: Tile sets the assembler has difficulty with.

The addition of one or two tiles to AaAa-- (Figure 7.4) yields patterns
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which when finite in size form Sierpinski Triangles (Figure 7.7).

Figure 7.7: Tile sets that yield Sierpinski triangles.

The tile set in Figure 7.8 mimics the structure of DNA.4 The tiles

represent respectively the sugar-phosphate backbone, adenine, thymine,

cytosine, and guanine.

Figure 7.8: Tile set based on DNA.

The tile set on the left in Figure 7.9 is visually reminiscent of a Feynman

diagram containing photons, electrons, and positrons. c--C-- represents

electrons and positrons, and 44---- represents photons. Relaxing the

requirement that the assemblage be connected, and adding a tile for

spontaneous electron-positron creation/annihilation gives rise to

“zero-point fluctuations” (tile set on right).

4This tile set was suggested by Jeff Epler.
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Figure 7.9: Tile sets reminiscent of Feynman diagrams.

Tile sets based on an underlying triangular grid may be simulated using

a hexagonal grid (Figure 7.10). This merely requires that every second

edge be empty.

Figure 7.10: Tile sets based on triangles, simulated with hexagons.

If tiles are decorated by drawing lines connecting different edges, the

results resemble Celtic knot-work (Figure 7.11).



Chapter 7 Declarative texture synthesis 110

Figure 7.11: Knot-work patterns. The third pattern consists of a

single loop.

7.4.3 k-morphism and crystallization

Grünbaum and Shephard [1987, pp.46–53] describe a number of tiles

that allow multiple regular tilings. These are called k-morphisms. An

example of this is shown in Figure 7.12. Tile sets were also found that

suggest generalizations of this concept. Figure 7.13 shows a tile set that

yields either regular tiling or a random network pattern. Figure 7.14

shows a tile set with ∞-morphism.

The assembly process (using the algorithm described earlier) shows

behavior reminiscent of crystallization. The assembler initially makes

little progress, but eventually produces a sufficient “seed” from which a

pattern crystallizes outwards rapidly. This might also be considered a

simple form of auto-catalysis.
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Figure 7.12: A k-morphic tile set. k is at least 3.

Figure 7.13: A tile set with two mutually exclusive modes.

Figure 7.14: An ∞-morphic tile set. The repeating unit can be of

arbitrary size.
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7.5 Relation to cellular automata

A cellular automaton is a grid of cells in which each cell evolves over

time according to simple local rules. By mapping the time dimension

into a spatial dimension, appropriately shaped tile pieces can be used to

implement cellular automata. This has interesting implications.

7.5.1 Wolfram’s Elementary Cellular Automata

Wolfram’s “Elementary Cellular Automata” [Wolfram, 2002] are

one-dimensional automata in which each cell can be in one of two states,

and in which the state of each cell depends only on the previous state of

that cell and its two immediate neighbours. Such one-dimensional

automata can be mapped into two-dimensional tile sets.

An Elementary Cellular Automaton tile set requires certain crossover

pieces so that tiles implementing the rules of the automaton have access

to all required input edges. The following tiles suffice: a-aC-C, a-bC-D,

b-aD-C, b-bD-D.

A rule tile is required for each possible set of inputs, having three input

edges as follows:

Input Edges

000 cac

001 cad

010 cbc

011 cbd

100 dac

101 dad

110 dbc

111 dbd
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Each rule tile will also have three output edges that represent the state

of the cell, which must be one of:

State Edges

0 AAA

1 BBB

The rule number of an Elementary Cellular Automaton when written in

binary gives the mapping from inputs to states. For example, Rule 110

(Figure 7.15) maps to the tile set: a-aC-C/a-bC-D/b-aD-C/b-bD-D/

cacAAA/dacBBB/cbcBBB/dbcBBB/cadAAA/dadBBB/cbdBBB/dbdAAA. Rule

110 has been shown by Matthew Cook to be capable of universal

computation (see Wolfram [2002, pp. 675–689]).

Figure 7.15: Elementary Cellular Automaton Rule 110, as a tile set.

7.5.2 Causality

In the case of tile sets based on cellular automata, a solution may be

found without backtracking by selecting pieces in an order corresponding

to the automata’s time direction. Such tile sets might be described as

causal. Furthermore these tile sets are deterministic, in that the

anti-causal neighbours of a location fully determine which tile must be

placed in it.

That causality is an emergent property of tile sets rather than an
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assumption (as per cellular automata, and simulation of dynamic

systems in general) allows us to think about cases that are “almost”

deterministic-causal. There are two obvious ways to break strict

deterministic causality:

• We might add several tiles that will match a given previous

configuration. The result would be a random cellular automaton.

• We might choose not to include any tile which matches a certain

input configuration. This would forbid any past state that would

lead inevitably to this configuration. The result would be a tile set

that is mostly causal, but with teleological elements.

Combining these two changes would yield a tile set that was “almost”

deterministic causal. This would seem to be an interesting

generalization. It would be interesting to know if teleological effects

would tend to be obscured by random elements on sufficiently large scale

in such a tile set.

The importance of this is not clear, and it is possible that it has no

importance. The most obvious potential application would be in

modelling quantum-scale phenomena. Entanglement, for example, is

straightforward to implement in a near-causal tile-set. The discrete

nature of tile-sets is also appealing at this scale. However it is not

immediately clear how to account for destructive interference of the

wave-function.

7.6 Discussion

A diverse range of patterns were formed from simple tile sets. This is

evidence against Wolfram’s claim that causality is necessary in order for
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interesting patterns to be common. Though some tile sets are

computationally difficult to assemble, many displaying interesting

patterns are not, and these are not strictly those that can be generated in

a causal manner. Causal systems are a class of easy-to-assemble tile sets,

but there are likely to be other classes that yield patterns of comparable

interest with comparable ease of assembly. For example, tile sets whose

assembly by the algorithm described above sometimes requires a large

backtrack, but on average require total backtracking of the order of the

size of the assemblage, can be assembled in linear expected time.

Were the method of texture synthesis described in this chapter applied

to decorating a (real or virtual) object, the nature of the tile-set would

constrain the resulting decoration. One might even need to slightly

redesign the object to suit the tile-set. A certain amount of

back-and-forth would be required. It is the author’s opinion that objects

created using methods that require such back and forth can have greater

aesthetic value than objects created using methods that do not. The

patterns most difficult to work with may also be the ones of greatest

aesthetic value.

There are interesting parallels between tile set patterns, Wolfram’s

cellular automata, and best-fit synthesis, all of which are instances of

Markov Random Field synthesis. We saw in Chapter 3 that a

goodness-of-fit metric based on the thin-tailed Gaussian distribution

produced some characteristic results. Certain features would be repeated

obsessively, in an almost autistic manner, and there were sometimes

regions of “garbage” (this can be seen in Figure 2.6). These features

disappeared when a more robust metric derived from the fat-tailed

Cauchy distribution was used (Figure 3.4). A rule that says two pieces

can not be placed next to each other unless they exactly match is also a

kind of “thin tailed” criterion: the tail is so thin that it is zero! The

rules of a Wolfram-style cellular automaton are another instance of this
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– a particular rule either matches or it does not. Do we see these same

characteristic patterns in cellular automata and tile set patterns? Yes.

Excessive repetition is what Wolfram would call a glider. Indeed, in

Figure 2.6, E3 displays features that are very clearly gliders (interpreting

movement down the page as progression in time). And “garbage” is

what Wolfram would call autoplectic randomness.

A criticism of Wolfram’s work can be made on this basis. It is Wolfram’s

thesis that these kinds of features are seen in all forms of computation,

and irrespective of the complexity of the underlying rules. However,

Wolfram only studies discrete rules in detail, and these may all be

characterized as “very thin tailed”. More forgiving rules, such as the

Cauchy-based metric introduced in Chapter 3 do not show these

characteristics. “Thin-tailed” rules will tend to obsessively rely on only a

small portion of the rule-set5, so the size of the total rule set may not

have much effect on the result. “Fat-tailed” rules, in which a rule is still

applicable even if some criteria do not match exactly, will give rise to a

more representative sampling of the total rule set, and may be capable of

a richer set of behaviors.

For example, compare the best fit synthesis results for test image E3

using a Gaussian and Cauchy metric (Figure 7.16). With the heavier

tailed Cauchy metric, the repeating “glider” patterns are reduced.

5In best-fit synthesis, the rule-set is derived from the contents of the texture image.
Its complexity is proportional to the size of this image.
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(a) (b)

Figure 7.16: Test image E3 synthesized using Garber’s method. (a)

original metric, (b) Cauchy metric (σ = 15).

Interestingly, a causal relation between elements does not seem necessary

in order to produce this “autistic” behavior. The tile set patterns of this

chapter also contain repeating “gliders”, and multiple modes

(k-morphism) which lock themselves in such that a pattern can not be

extended to form a transition to a different mode. The best-fit variant

described in Chapter 3 also approximates acausality by choosing pixels

in random order and by refining early chosen pixel values on the basis of

later chosen ones, yet still produces obsessive repetitions when the

Gaussian derived metric is used.



Chapter 8

Conclusion and future work

In the introduction, three texture operations were identified: texture

synthesis, texture transfer, and plausible restoration. This dissertation

has presented several different approaches to performing these

operations:

• A variant of the best-fit method that is fast and flexible, capable of

all three operations (Chapter 3).

• A fast patchwork synthesis method, capable of texture synthesis

and transfer (Chapter 5).

• A method based on texture modelling, capable of plausible

restoration of both missing areas and noise corrupted images

(Chapter 6).

These represent different trade-offs between speed, quality, and

generality. In particular, the best-fit variant described in Chapter 3

represents a practical approach to these operations in a wide range of

circumstances, and is in current use as a GIMP plug-in.

118
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Some theoretical aspects of texture synthesis were also explored using

tile patterns (Chapter 7). This served to place methods of performing

the texture operations presented here and elsewhere in context.

An image, even if damaged, contains a great deal of information about

its texture. As the methods of Chapters 3 and 6 demonstrated, this

information may be extracted from the image and used to repair or alter

it. We need not pre-program into methods of performing texture

operations specific information about the types of features found in

images (such as that they might contain sharp edges, or spot and edge

features of different scales), as this information is already present in the

image. Indeed to specify these things a priori may limit the range of

images a method can successfully operate on.

Methods such as the plausible restoration method of Chapter 6 may

eventually out-perform the best-fit method and variants, as such

methods are capable not just of copying existing areas of texture but

inventing new plausible instances of that texture based on an inferred

model of the texture. For example, such methods may extrapolate pixel

values outside of the bounds seen in the available texture sample (see

Figure 6.5). A major weakness with the method presented in Chapter 6,

however, is that it is one of finding a unique optimum. The best-fit

methods, by contrast, sample from a field of possibilities. The method of

Chapter 6 can therefore reconstruct smooth curves, but not replicate the

roughness of the original texture.

To remove this weakness, the merit function (Equation 6.4) would need

to be replaced by an explicit probability density function, and random

samples produced based on that function. A random sample might be

produced from such a probability density function using the

Metropolis-Hastings algorithm (see Section 2.2.2). Such an extension

would also allow the method of Chapter 6 to be applied to texture
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synthesis and texture transfer. However, given the large number of

parameters involved (one parameter per pixel of the image, plus the

parameters of the model), a naive application of this algorithm will take

an unreasonable number of iterations to converge. Finding a variant of

the Metropolis-Hastings algorithm that converges quickly is an open

problem.

An interesting feature of the texture operations identified in the

introduction is that they can bypass modelling. To predict the value of

some unknown data we normally select a model based on the data we

have available (induction) and use this model to predict the unknown

data (deduction). There is a problem, however, with deciding exactly

which model to use. If the most likely model is chosen (Maximum

Likelihood), we have ignored the possibility that the data was a less

likely product of a slightly less likely model. The Maximum Likelihood

model will tend to over-fit the data. Statisticians avoid over-fitting by

using “unbiased” estimators of model parameters. An unbiased

estimator is a means of estimating a parameter such that the average

expected value of the estimator, when applied to a sample of any size, is

equal to the true value of the parameter [McGee, 1971, pp.99–100]. An

unbiased estimate may be found for any single parameter in a model,

but combining these estimates into a full model does not produce an

unbiased model. For example, if a texture sample were insufficiently

large to allow a decision between two different possible models of

texture, a model composed of unbiased parameters

might—incorrectly—allow a mixture of the two possible textures in a

single image. This problem will occur in any method that tries to use a

single model to characterize the field of all possible models.

However, when performing the texture operations, we need not settle on

a specific model. The output of the texture operations is a random

sample from the field of all possible results. Methods of performing
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texture operations may choose a model at random (conformant to the

probability distribution of models given the input data), or omit

modelling entirely. The best-fit method omits modelling, producing new

samples directly from the sample given.1 If the method of Chapter 6

were extended to perform sampling, as described above, the sample

produced would have an associated randomly sampled model.

Beyond sampling from the field of possible images, we may wish to

characterize the full field. This would be useful where we need to be sure

that what we are reconstructing is really there, and not just a plausible

confabulation (for example, in medical or military applications). We

may wish to find the average image, or measure the amount of possible

variation in a particular region, or calculate some other relevant

statistics. For example, in Figure 6.3, some fine texturing in the hat was

lost. The values of pixels in the hat in the image of maximum likelihood

happen to lie at the boundary of their allowed ranges, and are not

representative of the field of possibilities. An average of the field would

be more representative, and would preserve this fine texturing without

inventing new details.

In conclusion, significant progress has been made in this dissertation

towards the ideal of an all-purpose texture tool, and has also mapped

out some fundamental challenges that must be taken into account when

creating such tools. Ongoing development of more powerful tools will

provide a richer environment of interactions between artists and

designers and the objects they create, helping better express both the

intentions of artists and designers and the underlying logic of the

textures with which they work.

1To produce a truly random sample, the best-fit method would need to examine
previously synthesized areas of the output in addition to the input. The plausible
restoration method described by Drori et al. [2003] does this.
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Appendix A

Test suites

In this dissertation, various texture operations needed to be tested. For

this purpose, a test-suite of images was selected. Also, images suitable

for texture transfer were selected.

123
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A.1 Images

A test suite of images was chosen from the VisTex texture database

[VisTex]. These are shown in Figure A.1. Included are simple (S1, S2)

and complex (C1, C2, C3, C4) textures, textures with elongated features

(E1, E2, E3), tiling patterns (T1, T2), and several images with

non-homogeneous texture (N1, N2, N3). All images contain 256×256

pixels.

S1 S2 C1

C2 C3 C4

E1 E2 E3

T1 T2

N1 N2 N3

Figure A.1: Test suite for texture synthesis.
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A.2 Texture transfer

Test images for texture transfer were also selected. The two textures

(Figure A.2a) were taken from the VisTex database [VisTex] and are

both 512×512 pixels in size. The pattern images (Figure A.2b) were

taken with a digital camera, and are 825×630 and 548×804 pixels in size

respectively.

(a) S1 S2

(b) I1 I2

Figure A.2: Texture transfer test suite: (a) texture samples, (b)

images.



Appendix B

Paper presented at

WSCG-2001

The following paper was presented at WSCG-2001, a computer graphics

conference held at the University of West Bohemia in the Czech

Republic. It describes an early and overly complicated attempt at

tackling the problems addressed in Chapter 3.

Google Scholar1 lists 22 citations of this paper by other authors.

1http://scholar.google.com/

126



Appendix B Paper presented at WSCG-2001127

A NON-HIERARCHICAL PROCEDURE FOR
RE-SYNTHESIS OF COMPLEX TEXTURES

Paul Harrison

School of Computer Science and Software Engineering
Monash University

Wellington Rd.
Clayton, 3800

Melbourne, Australia
pfh@yoyo.cc.monash.edu.au

ABSTRACT

A procedure is described for synthesizing an image with the same texture as a given input image.
To achieve this, the output image is built up by successively adding pixels selected from the input
image. Pixels are chosen by searching the input image for patches that closely match pixels already
present in the output image. It is shown that the accurate reproduction of features in the input
texture depends on the order in which pixels are added to the output image. A procedure for
selecting an ordering which transfers large complex features of the input to the output image is
described. This procedure is capable of reproducing large features even if only the interactions of
nearby pixels are considered. The procedure can be altered to allow specification of the placement
of particular features in the output texture. Several applications of this are described.

Keywords: texture synthesis, image manipulation

1 INTRODUCTION

The texture of an image might be defined broadly
as the interrelationships between pixels in that
image. The ability to analyse and manipulate
image texture has a number of interesting appli-
cations. The simplest application is to create a
new image with the same texture but of different
size and shape to a sample image. Seamless edit-
ing of images is also a possibility. For example an
object could be removed from an image by syn-
thesizing a new section of the background texture
over the top of it. These applications all rely on
the ability to re-synthesize a sample texture to fit
a variety of constraints.

A number of texture re-synthesis methods are
described in the literature. One approach is
based on searching for specific features in textures
[Heege95] [Bonet97] [Porti99]. In these meth-
ods, the input image is decomposed into a set of
features. Statistics about these features are col-
lected, and used to synthesize a new image. One
problem with these methods is that they can only

recognize a set of features which have been speci-
fied in advance. While the results can be impres-
sive, it is difficult to devise a generic feature set
that can be used to describe all textures.

Another approach to the texture re-synthesis
problem is to analyse and reproduce interactions
between individual pixels [Monne81] [Gagal90].
Methods based on this approach define a func-
tion describing a pixel in terms of its neighbours
and a random element. This function is used to
generate a new image, pixel by pixel.

Recently, a new pixel-based technique has been
developed based on best-fit searching. Garber
[Garbe81] and Efros and Leung [Efros99] inde-
pendently developed this approach, in which each
pixel is selected by searching the input image for
a patch of pixels closely matching nearby pixels
already present in the output image. This results
in an output image pieced together from small
parts of the input image. Using this technique,
textures can be synthesized in which the relation-
ships between neighbouring pixels are extremely
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ΩI : The set of pixel locations in
the input image.

I(s), s ∈ ΩI : The pixel in the input image
at location s.

ΩO : The set of locations contain-
ing pixels in the output im-
age.

O(s), s ∈ ΩO : The pixel in the output im-
age at location s.

L(s), s ∈ ΩO : The location of the pixel in
the input image that is in
the output image at location
s.

ΩK : The set of offsets considered
when calculating the simi-
larity of two texture patches.

K(u), u ∈ ΩK : Weighting given to a partic-
ular offset u.

A(s), s ∈ ΩI
B(s), s ∈ ΩO : Two uniformly random

functions.

Table 1: Table of symbols.

complex.

Efros and Leung report that for good results the
size of the patch searched for in the input im-
age should correspond to the size of the largest
feature in the texture. To allow larger features,
Wei and Levoy [Wei00] propose a hybrid of the
feature-based and best-fit techniques that gener-
ates the output in a pyramid of successively finer
resolutions.

This paper presents a refinement of the pixel-
based best-fit re-synthesis procedures introduced
by Garber [Garbe81] and Efros and Leung
[Efros99]. The most important change is to the
selection of the order in which pixels are added to
the output image. This order is selected to allow
reproduction of features larger than the size of
the patches searched for in the input image. The
procedure avoids decomposing the input image
into a predefined feature set, and can therefore
re-synthesize a wide range of textures. An ex-
tension to this procedure is presented that allows
specification of the layout of different regions of
texture in the output image.

2 RE-SYNTHESIS PROCEDURE

The procedure described in this paper takes as
input an image containing a sample of a texture
and produces another image with the same tex-
ture.

The procedure has two stages. In the first stage,
pixel interrelationships in the input image are
analysed. The extent to which the value of each
pixel constrains the values that can be taken by
neighbouring pixels is determined. The reasons
for doing this are discussed in section 2.1 and
the calculations necessary are described in sec-
tion 2.2.

In the second stage, pixels are added to the ini-
tially blank output image until all locations have
been filled. The order in which pixels are added
is chosen to facilitate faithful reproduction of
the texture of the input image, using the results
from the first stage, as described in sections 2.1
and 2.2.1. Section 2.2.1 also describes the ini-
tialization of this stage in terms of choice of the
locations and values of seed pixels.

To add a pixel to the output image at a partic-
ular location, the surrounding pixels which have
already been added to the output image are ex-
amined. The closest match to these pixels is lo-
cated in the input image, and the corresponding
pixel from the input image is inserted in the out-
put. This is described below and in section 2.2.2.

Symbols used in this paper are listed in Table 1.

Colours are stored as RGB values. To compare
individual pixels, the sum of the absolute values
of the differences in each colour component was
used:

d((r1, g1, b1), (r2, g2, b2)) =
|r2 − r1|+ |g2 − g1|+ |b2 − b1|

(1)

To measure how closely patches from the input
image match a patch in the output image, a dis-
tance function can be used. The distance func-
tion used in this paper is a weighted Manhattan
(city block) distance function. To allow synthe-
sis of textures with a random element, the dis-
tance function contains a small random compo-
nent with weight specified by the parameter ε:

D(s, t) = ε |A(s)−B(t)|
+
∑

u∈ΩK ,t+u∈ΩO
K(u)d(I(s+ u), O(t+ u))

(2)

The Manhattan distance was chosen over the
more commonly used Euclidean distance as it is
more forgiving of outliers. I.e. a good match in
most pixels in the patch will not be negated by a
poor match in one or two pixels.
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Figure 1: Barcode texture.

For each location t in the output image, a pixel
I(s) from the input image is chosen. The location
s in the input image is selected to minimize the
distance D(s, t) as given in Eq. 2.

2.1 Ordering of pixel insertion

This section discusses the order in which pixels
are added to the output image in the second stage
of the procedure. As will be demonstrated, cer-
tain features such as branching patterns are only
reproduced correctly in the output image if the
placement of pixels proceeds in a particular or-
der.

Consider the values a particular pixel in a tex-
tural image could take. The pixel value must be
consistent with the values of all other pixels in
the image. These other pixels may be said to
constrain the values the selected pixel can take.

An important property of these constraints is that
the constraint imposed by a distant pixel in some
direction may also be provided by a closer pixel
in the same direction. In general, most of the
constraint will be imposed by nearby pixels. For
example, in Fig. 1 the constraint imposed by pix-
els far above or below a given pixel will also be
provided by pixels a small distance above or be-
low that pixel. This kind of relationship may be
directional. In Fig. 1 it applies vertically but not
horizontally.

These constraints can be thought of in terms of
information theory [Blahu87]. Without any prior
knowledge, a pixel is equally likely to take any
value, and this requires a certain number of bits
to encode. If its neighbours impose constraints on
the values it can take, it will require (on average)
less bits to encode. The average number of bits
required to encode some information is referred
to as its entropy [Blahu87, pp. 55]. Entropy can
therefore be used to measure the constraints im-
posed on a pixel.

The pixel selection procedure is based on a search
for patches of pixels in the input image that
match those already placed in the output. These
patches must cover enough pixels to capture all

(a) (b)

1 1 1
1 1 1 1 1
1 1 P 1 1
1 1 1 1 1

1 1 1

(c) (d)

(e) (f)

Figure 2: Textures generated using differ-
ent orders of pixel insertion.

Input image (a), weighting of the distance function

K(u) used about the center pixel P (b), and the out-

put from raster scans proceeding from top to bottom

(c), bottom to top (d), left to right (e), and right to

left (f).

the constraints on each location, or the texture
will not be reproduced correctly. However, if the
patch size is too large, there will be less chance
of finding good matches in the input image. It is
therefore desirable to choose an order to add pix-
els to the output image in which the constraints
imposed on each location are captured by a small
neighbourhood of pixels.

One order that can be used to add pixels is a
raster scan. Fig. 2 shows images generated using
raster scans in different directions. The lichen
texture being synthesized has a complex branch-
ing pattern. As can be seen, the scan that pro-
ceeds from bottom to top (Fig. 2d) reproduces
this pattern the most accurately.

The other raster scans in Fig. 2 have various prob-
lems. The top to bottom scan (Fig. 2c) produces
anomalous dark blotches, and the lichen in the
sideways scans (Fig. 2e and 2f) have branches on
one side only.

These artifacts can be explained by considering
how the pixels constrain one another. The con-
straint imposed on a given pixel by the pixels im-
mediately below it is almost the same as the con-
straint imposed by all pixels below it. This is not
true of pixels above or to either side of that pixel.
The bottom-to-top raster scan therefore produces
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a better result than the others tested.

To utilize these types of constraint, the re-
synthesis procedure assigns a priority to each lo-
cation in the output image. Highest priority is
given to locations which are highly constrained
by neighbouring pixels that have already been
added. Then the following procedure is followed:

While there are still empty locations in

the output image:

• Find the empty location with the

highest priority.

• Choose a pixel from the input image

to place in that location.

• Update priorities of empty

neighbouring locations based on the

new pixel value.

A system for assigning priorities needs to be cho-
sen. A simple prioritization scheme estimates
the entropy of each unfilled location given its
nearby neighbours, and gives higher priority to
locations with lower entropy. The problem with
this scheme is that there may be some areas of a
texture in which nearby pixels tightly constrain
each other, and others where there is less con-
straint and pixel values are more random. The
areas with tight constraints will always be given
higher priorities and therefore be disproportion-
ately represented in the output image.

The approach taken in this paper is to define a
normalized weighting W (s, u). This weighting in-
dicates the relative amount of information a pixel
I(s) gives about each of its neighbours I(s + u).
To ensure no part of the image is given an advan-
tage over another part, this weighting is defined
so that it sums to unity for each pixel I(s). The
priority of each empty location in the output can
then be defined as a sum of the weightings from
neighbouring pixels.

2.2 Analysing interactions between
neighbouring pixels

Weightings are needed to prioritize the order in
which pixels are inserted. They are also needed in
the distance function used to select these pixels.
To create these weightings, interactions between
neighbouring pixels in the input image are anal-
ysed. The calculation of these weightings is the
first stage of the synthesis procedure. For pur-
poses of computational simplicity, the effect of
each neighbour on a location is assumed to be
independent of the effects of other neighbours.
The interactions between constraints of different
neighbours on a location are neglected.

To compute the weightings, the amount of in-
formation every pixel provides about each of its
near neighbours first needs to be estimated. The
neighbours being considered are those whose off-
set from the central pixel is a member of the set of
offsets ΩK used to calculate the distance function
D(s, t) (Eq. 2).

These amounts of information may be measured
by considering each offset u ∈ ΩK in turn. For
each offset, the number of bits of information
G(s, u) provided by each pixel in the input im-
age I(s) about the pixel offset from it I(s+ u) is
estimated, as explained below.

Offset pixels I(s+ u) are grouped into sets based
on the value of the corresponding pixel I(s).
Within each set, the pixels will have a distribu-
tion of values. These values are modelled as be-
ing normally distributed in each colour compo-
nent (red, green and blue), and the parameters of
these distributions are estimated. This is used to
calculate the number of bits required to encode
pixels of each set.

To distribute the pixels I(s + u) into sets, they
are classified by the most significant m bits of
the red, green and blue components of I(s). The
value of m should be chosen so that the sets are
neither so small that an accurate estimate of the
mean and standard deviation is impossible, nor
so large that most of the information from I(s) is
discarded.

If it is assumed that all the pixels in a
set come from the same distribution, stan-
dard deviations calculated from the sets can
be used to describe individual pixels in those
sets. This gives standard deviations for each
pixel at each offset for each colour component:
σr(s, u), σg(s, u), σb(s, u).

These standard deviations can be used to calcu-
late the entropy of each pixel I(s+u) given I(s).
The average number of bits required to store a
normally distributed variable with standard de-
viation σ, to an accuracy of ± 1

2 , is:

1

2
log2(2π) +

1

2 ln 2
+ log2 σ (3)

Summing this for each colour component gives
the entropy of the pixel I(s+ u) given I(s):

H(s, u) = 3
2

log2(2π) + 3
2 ln 2

+ log2 σr(s, u)σg(s, u)σb(s, u)
(4)
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Performing the same calculation without splitting
the image into sets gives the entropy of pixels in
the image independent of any of their neighbours,
Himage.

The number of bits given by a pixel I(s) about
another pixel offset from it I(s + u) can then be
found by subtracting the entropy of I(s+u) given
I(s) from the entropy of pixels in the image if
nothing is known about their neighbours. Call
this value G(s, u), where:

G(s, u) = Himage −H(s, u) (5)

2.2.1 Prioritization weighting

A normalized weighting W (s, u) suitable for pri-
oritizing the order in which pixels are added to
the output image can be defined from G(s, u) :

W (s, u) =
G(s, u)∑

−v∈ΩK
G(s, v)

(6)

The priorities of unfilled locations in the output
image may be defined from W (s, u) :

P (s) =
∑

u∈ΩK ,s+u∈ΩO

W (L(s+ u),−u) (7)

Additionally, locations near the edge of the image
have their priorities adjusted as if the positions
beyond the edge of the image were already filled
by pixels having average properties (i.e. with
weights W (s, u) averaged over all s). These lo-
cations then act as starting positions for filling
the output image. The value of the first pixel
added, having no neighbours, is chosen at ran-
dom from the input image (on the basis of the
random component of the distance function).

2.2.2 Distance function weighting

The distance function D(s, t) (Eq. 2) used to se-
lect pixels also requires a set of weightings. To
make best use of the input image, these weight-
ings should reflect the degree to which each neigh-
bour constrains the value of the pixel.

The entropy of a normally distributed random
variable, such as one of the color components of

a pixel, is the logarithm to base two of its stan-
dard deviation, to within a constant (see Eq. 3).
This means that for each time a constraint on a
particular location halves the standard deviation
of possible values of one color component of that
location, one more bit of information about the
location becomes known. In light of this relation-
ship, the weighting given to a neighbour might be
doubled for every bit it gives about a location.

The weighting system used in the distance func-
tion was chosen to satisfy this constraint:

K(u) = 2G(−u) (8)

where G(u) is the average value of the weightings
G(s, u) for a particular offset u.

2.3 Results of the procedure

Example results from the procedure are shown in
Fig. 3. A seven by seven neighbourhood of pix-
els (ΩK = [−3, 3]× [−3, 3]) was used to generate
these images.

The images in Fig. 3 required an average of four
and a half minutes and six and a half megabytes
of memory to produce on a 300Mhz Pentium II.
The time taken by the procedure increases ap-
proximately linearly with the size of the input
image, and can be extremely slow for large input
images.

Less successful results are shown in Fig. 4. In
particular the procedure is very sensitive to fea-
tures that only appear at the edge of the input
image. In this case the output tends to contain
artifacts such as repeating patterns. Also, as can
be seen in Fig. 4b, the procedure does not rec-
ognize regularly spaced components of a texture
such as tiles.

3 SPECIFICATION OF THE
PLACEMENT OF TEXTURE
REGIONS

Some textures contain several regions, with prop-
erties that differ from one region to another. A
simple extension to the distance function used to
select pixels gives a means of specifying the layout
of these regions in the output image. This exten-
sion requires the definition of two new images,
one which maps regions in the input, J(s), and
one which specifies corresponding regions in the
output, Q(t). It also requires weightings, L(u),
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Figure 3: Sample results.
The output of the procedure is shown below each in-

put image.

which represent the relative importance of pix-
els from the input map in determining the value
of their surrounding pixels in the input image.
These are chosen using the same method as that
used to choose K(u). Then a new distance func-
tion is used in place of Eq. 2:

D(s, t) = ε |A(s)−B(t)|+∑
u∈ΩK ,t+u∈ΩO

{K(u)d(I(s+ u), O(t+ u))+

L(u)d(J(s+ u), Q(t+ u))}
(9)

(a) (b)

An implementation of the procedure can be ob-
tained from http://www.csse.monash.edu.au/
~pfh/resynthesizer/

Figure 4: Some failures.

3.1 Results of the extended procedure

An example of the use of the extended synthe-
sis procedure is shown in Fig. 5. The texture
used was a photograph of clouds (Fig. 5b). A
map of this texture was created showing regions
of cloud and blue sky (Fig. 5a). Another map, of
a checkerboard pattern, was used as the output
map (Fig. 5c). The result of applying the proce-
dure to these three images is shown in Fig. 5d.

Texture re-synthesis has been previously applied
to the removal of objects on a homogeneous back-
ground by synthesizing a new section of that
background [Igehy97] [Efros99]. The ability to
constrain placement of texture regions allows syn-
thesis of a new background to replace an object,
even if the background is non-homogeneous. An
example of this is shown in Fig. 6. Fig. 6a shows
a picture of a donkey standing in a field. In this
picture, the field is not homogeneous because of
perspective expansion. A feature map of the im-
age (Fig. 6b) was constructed with parts of the
image equidistant from the camera having the
same value. A new section of the background was
then synthesized to replace the donkey, using the
rest of the background as input texture. The new
section was constrained to join with the existing
background and to follow the feature map. The
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(a) (b)

(c) (d)

Figure 5: Constraining a cloud texture to a
checkerboard pattern.

Input map (a), input texture (b), output map (c),

and output of the extended synthesis procedure (d).

(a)

(b)

(c)

Figure 6: Example of object removal.
Original image (from [Igehy97]) (a), map (b), and

image with object removed (c).

result is shown in Fig. 6c.

4 CONCLUSION AND FUTURE
WORK

A procedure has been described for synthesizing
an image of arbitrary size with the same texture
as that of a sample input image. The procedure
is capable of reproducing large features from this
input image, even though it only examines inter-
actions between pixels that are close neighbours.
Significantly, the procedure does not have any
preconceived notion of what features to expect
in the input texture.

A simple extension to this procedure allows fea-
ture placement in the new image to be con-
strained. It is effectively a generic filter, in that
when given an example of a change to one im-
age it can reproduce the same change in another
image.

Future work on the procedure described here
could refine the distance function to consider
matches that have similar structure even if they
are slightly lighter or darker or have a different
hue. It could also be extended to work on non-
flat geometries, to allow synthesis of textures cov-
ering three-dimensional objects. It might also be
applied to three dimensions to manipulate anima-
tions or solid textures, or to one dimension as a
sound synthesis technique.
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L. Sjööblom. Swedish accent. Playboy, 11:135–141, 1972.

G. Turk. Generating textures on arbitrary surfaces using

reaction-diffusion. In Proceedings of SIGGRAPH 1991, pages 289–298.

ACM Press, 1991.

G. Turk. Texture synthesis on surfaces. In Proceedings of SIGGRAPH

2001, pages 347–354. ACM Press, 2001.

VisTex. MIT Vision Texture database. Available: http://www-white.

media.mit.edu/vismod/imagery/VisionTexture/vistex.html

(Accessed: 2002, May 27).

L. Wei and M. Levoy. Fast texture synthesis using tree-structured vector

quantization. In Proceedings of SIGGRAPH 2000. ACM Press, 2000.

Available: http://graphics.stanford.edu/projects/texture/

(Accessed: 2000, September 7).

L. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces.

In Proceedings of SIGGRAPH 2001, pages 347–354. ACM Press, 2001.

G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo

Methods. Springer, 1995.

S. Wolfram. A New Kind of Science. Wolfram Media Inc, 2002.



BIBLIOGRAPHY 141

Y. Xu, B. Guo, and H. Shum. Chaos mosaic: Fast and memory efficient

texture synthesis. Technical Report MSR-TR-2000-32, Microsoft

Research, 2000.

Y. Y. Yang, N. P. Galatsnos, and A. K. Katsaggelos. Regularized

reconstruction to reduce blocking artifacts of block discrete cosine

transform compressed images. IEEE Transactions on Circuits and

Systems for Video Technology, 3(6):421–432, 1993.

P. N. Yianilos. Data structures and algorithms for nearest neighbour

search in general metric spaces. In Proceedings of the 4th Annual ACM

Symposium on Discrete Algorithms, pages 311–321. ACM Press, 1993.

A. Zakhor. Iterative procedure for reduction of blocking effects in

transform image coding. IEEE Transactions on Circuits and Systems

for Video Technology, 2(1):91–95, 1992.

J. Zhang, K. Zhou, L. Velho, B. Guo, and H. Shum. Synthesis of

progressively-variant textures on arbitrary surfaces. In Proceedings of

SIGGRAPH 2003, pages 295–302. ACM Press, 2003.


