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A DISTRIBUTION FREE VERSION OF THE SMIRNOV TWO 

SAMPLE TEST IN THE p-VARIATE CASE1 


University of California, Berkeley 

1. Introduction. One of the classic problems of the theory of nonparametric 
inference is testing whether two samples come from the same or different popula- 
tions. If the observations are univariate and we suppose only that the parent 
populations are governed by a continuous distribution function, genuinely 
distribution free and asymptotically consistent tests have been proposed by 
Smirnov, Von Mises, and Lehmann among others. For a review of the enormous 
literature that has grown up about these and related tests we refer to [I] and 
[3]. The multivariate case seems to have been studied far less fully. The obvious 
generalization of the univariate methods leads to procedures which are not 
distribution free (see [17]). Lehmann [12] has proposed a genuinely distribution 
free test consistent against all alternatives in this instance also, but his method 
involves post experimental randomization as an intrinsic factor and is therefore 
not fully satisfactory. Rosenblatt in [14] has given an ingenious solution to the 
goodness of fit problem in the multivariate case but his device does not seem to 
carry over to the two sample problem. Recently, David and Fix [2] and Sen and 
Chatterjee [16] have remarked that the classical permutation principle of Fisher, 
as used for instance by Wald and Wolfowitz in [19], when applied to rank tests 
in multivariate problems leads to procedures which are distribution free and 
which can, in principle a t  least, be tabled. 

Our approach consists of combining this remark with the generalization of 
the classical Smirnov test to obtain a procedure which we show is distribution 
free and consistent against all alternatives. To achieve this aim we require a 
theorem on the "conditional" convergence of the empirical distribution function 
which is analogous to known results on permutation distributions (cf. 1191, [8]). 
This theorem is then applied to yield known results of Kiefer and Wolfowitz 
[l1] and Dudley [6]. 

The paper is organized as follows: Section 2 contains a formal statement of 
the model and our proposed procedure. In  Section 3 we introduce the stochastic 
process considerations we need, state the main theorems on convergence of 
stochastic processes ((3.1) and (3.2)) and derive the consistency of our proce- 
dure from these as well as the previously mentioned results of Dudley and Kiefer 
and Wolfowitz. Section 4 deals with some auxiliary results on sampling from a 
finite population necessary for the proof of Theorem 3.1. Two of these results are 
due to H6jek ([8] and [9]), and one to Wald, Wolfowitz, Noether and Hoeffding 
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(see e.g. [7]). The others, Lemmas 4.3, 4.6, and 4.7, are new and may be of 
independent interest. The proof of Theorem 3.1 is completed in Sections 5, 6, 
and 7. 

2. The model and the procedure. Let XI , Xz , . ; YI , Yz , . . . , be two se- 
quences of p-vectors (observations) defined on a measurable space (0, a ) .  For 
simplicity we take 0 to be [Rp]" x [RpIm where [Rp]" is the space of ordered 
sequences of ordered p tuples of real numbers. Let be the usual product Borel 
field on 0, and let Xi, Yi be the usual projection maps. 

We suppose one of a family of probability measures POto hold on (0, a ) ,  
where 6' ranges over O = ( (F ,  G) :  F, G probability distribution functions on 
RPf and if, 6' = (F, G), Pg is the product probability measure on (0, a )  which 
makes the Xi independent and identically distributed according to F and the 
Yi similarly independent and identically distributed according to G. Let Oo = 
(6' E O: 6' = (F, F )  for some Fj.  The problem we are interested in is testing the 
hypothesis, H: 6' E Oo vs. K: 6' r Oo, consistently at level a. 

Formally we seek a sequence of (critical) functions q,,, : [Rp]" x [RpIn+ [0, 11 
which are Borel measurable such that for any given 0 < cr I1 

for all 6' E Oo , and 

for 6' e Oo , where EOindicates that expectation is taken under the assumption 
that 0 holds. 

We begin with some definitions. Let Fm(t, w) denote the empirical cumula- 
tive distribution of Xl(w), . . , Xm(w) for w e 0, and t E RP. Thus 

where A(t)  = {sE RP: s 5 t) and I A ( s )  is the indicator function of a set A in 
RP. AS is customary s 6 t refers to coordinatewise inequality between s = 

(s l ,  . . - , sp) and t = (tl , . , t,). 
Similarly, define 

and 

where N = m + n, AN = mN-l. 
In  the sequel we shall frequently refer to conditional probabilities and condi- 

tional expectations given HN , written PO[. I HN] and Ee( - I HN). We use this 
convenient notation to refer to the (regular) conditional probabilities of events 
in a and conditional expectations of functions measurable when the condition- 
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ing sigma field 

for any P which is a map of the set {XI, .. . ,x, ,yl , .. . ,y,} onto itself. This 
is clearly the information contained in HN ,viz. the "values" of the first m and n 
observations from our two samples without any identification of their "sample" 
origin. Clearly we can choose the regular conditional probability P'(w, .) so 
that i t  depends on w only through HN(', w).  

I t  is evident that HN is a suflicient statistic for 9 E Oo if only (XI , . ,X, , 
Yl, ,Y,) has been observed, in the sense that if A is a Borel set in 
[(RP)lrnX [(Rp)ln 

can be chosen independent of 9 for 9 E Oo . I n  fact if 8 E Oo given HN there are a 
finite number of equally likely values that (XI ,  ,X, , Y1, . . ,Y,) can 
assume. 

I n  what follows we shall always assume that PO[.  I HN] is computed under 
9 E Oo and we shall accordingly drop the subscript 9 in all subsequent conditional 
laws, probabilities, and expectations. 

Finally for any two distribution functions F and G on RPwe define the Kolmo- 
gorov (L,) distance between F and G as usual by, 

We can now define (pm,n by, 

= 0 otherwise, 

where c and y are uniquely determined by the condition that they be the smallest 
such numbers satisfying, 

This sequence clearly satisfies (2.1) and i t  follows from Theorems 3.1 and 3.2 
of the next section that i t  also satisfies (2.2). 

We remark that, a t  least in principle, the distribution of the test statistic 
under the null hypothesis can be tabled. 

Suppose for simplicity that F ( .  ) is continuous. We may assume that under 
go = (F,  F )  with probability one all the coordinates of the X's and Y's are dis- 
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tinct. Let 
Xi(w) = (Xil(w), . ,Xip(w)) 

and define Yi similarly. Let Rij(w) be the rank of Xij(w) among the set of num- 
bers [(Xkj(w)), 1 _I k 5 m] u [(Ykj(w)):1 5 k 5 n]. 

Similarly define Sii(w ) as the rank of Yij . Let Ri = (Ril , . . , Rs) and 
define Si similarly. Define 

Then if HNR(t, a ) ,  GnR(t, w) are defined in analogy to H N  and G, , clearly, under 
go , with probability one, 

where $(Z)  denotes the law of a random variable 2. Now HNRtakes on exactly 
(N!)p-l distinct values and for each value of H ~ ~ ,  F , ~takes on at  most (E) 
possible distinct values. 

3. Limiting behavior of F ,  given HN and statement of principal theorems. 
We begin this section by introducing a more general framework for our results. 

Let PIN, . . , P N N  be N points in RP, where we allow repetitions among the + 

points. 
I n  accord with our usage in the last section let HN be the distribution function 

of the measure which assigns mass N-I to each point PiN. 
Consider the experiment of choosing a t  random m of the points P I N ,  . . . ,P N N  . 

Again in accord with previous usage let F, be the distribution function of the 
measure which assigns mass m-' to  each of the m selected points, and let G, be 
the distribution function of the measure which assigns mass n-' to  each of the 
n remaining points where we suppose m + n = N. As we noted in the previous 
section if P I N ,  . . . ,P N N  denote the values of the "pooled" sample of 
X1 , . . ,X, ,Y1, . . . ,Y, where the X's and Y's originate from a common dis- + 

tribution F ,  then the conditional distribution of the empirical distribution func- 
tion of the X's is precisely that of F, constructed above. However, for the first 
two theorems of this section we shall make no assumptions on how the points 
P I N  , . . ,PNny are obtained. For convenience we introduce a suitable probability 
space (a, &, P )  with members Lj, and write F,(t, G) to indicate the dependence 
of F, on t e RP as a distribution function, and on the particular subset 
of PIN, . .. ,P N N  selected by the random experiment through G. I n  this formula- 
tion HNis a function of t only and is not stochastically determined. Of course, 

(3.1) G,(t, Lj) = ~ - ' ( N H N ( ~ )- mF,(t, G)). 

The triple (0,&, P )  whose formal description we leave to the reader is so chosen 
that F,(., . ) is a separable stochastic process on RP whose finite dimensional 
joint laws are determined in accord with the experiment we have just described. 
We take (mj and ( N  - m) to be unbounded sequences of natural numbers whose 
dependence on N m7e suppress. In  all future theorems when we say N -+ ai we 
mean that m and n = N - m both tend to m as well. Without loss of generality 
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we suppose that all the processes Fm( ., . ) are defined on the same probability 
space (fi, & P). 

Define the stochastic process XN(t, 3 )  on (fi, &) and RP by 

Let H be the distribution function of a probability measure on RP (which we 
shall also refer to as H ) .  We follow Dudley [5] and define Qn to be the set of real 
valued functions a ( .) on RP which : 

( i )  Are continuous except possibly on hyperplanes of the form ( (tl , . . . tp): 
t, = constant) which have positive H-measure. 

(ii) On hyperplanes as above are continuous from below with limits from 
above, where "below" and "above" refer to strict inequality in all coordinates. 

(iii) Have limits a t  points of the boundary of the compactification R' of Rp 
where R = [- m ,  - I - . . ] .  

Endow QH with the supremum norm making i t  a separable Banach space and 
let ZH be the topological Borel field of QH . Then ([5]) there exists a probability 
measure p~ on ( & a ,  ZH) such that the map X(t,  a )  defined for a 8 QH and t E RP 
and given by, 

is Gaussian with mean 0 and the stochastic process X( t ,  ) has covariance struc- 
ture given by, 

. ), ~ ( t ' ,  = ~ ( t(3.4) cov( ~ ( t ,  . ) )  A t') - ~ ( t ) ~ ( t ' ) ,  

where t A t' is the vector (min (tl , t i  ), . . . , min (t, , t,' ) ). Finally let 3n(Rp) 
be the set of all bounded real valued functions on RP endowed with the supremum 
norm, I / . I[. We require that (i?, &) have the property that {h: F,(., 3 )  = v] 8 & 
for every v E 3n(Rp). We shall say that a real valued functional h on 3n(Rp) is 
regular for H (a distribution function) if h is continuous in the supremum norm 
a t  all points of a Borel subset S of QH such that pH(S) = 1. Note that for any 
functional h the function h(XN( ., 3 ) )  is measurable in 3 in view of our assump- 
tions on (fi, &). We can now state our main result. 

THEOREM3.1 Suppose that 1/HN - HI 1 -+ 0 for some distribution function H. 
Then, for every h regular for H,  

(3.5) A ( ~ ( ~ ( X N (  S=(h(X(. ,  . ) ) ) I., .))I, 0-+ 

as N -+ a, where c (h (XN( . ,  . ) ) )  is the law of h(XN(., under P,a ) )  

zH(h(X( . ,  . ) ) )  is the law of h(X( . ,  . ) )  under H and A is the Lhvy-Prohorov 
distance between laws (distribution functions) on the real line. 

I n  the terminology of (Dudley [6]) the measures induced by the processes XN 
on 3n(Rp) converge weak* to pH . We postpone the proof of this theorem to the 
next four sections. 

Suppose now that XI, . . . , X, ,Y1 , . . , Y, are random vectors defined as 
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in the previous section and (with a slight abuse of notation) F, , Gn , and HN 
are the empirical cumulative distribution functions of the X's, the Y's and the 
pooled sample respectively. Define the stochastic process XN in terms of F, 
and Gn by equation (3.2). Note that these are all (including HN) functions on 
RP X Q. 

We shall say that a real valued functional h is regular for the two sample problem 
and H if h is regular for H and furthermore h(XN( a ,  w)) is a measurable function 
of w on Q for all N. Note that w is permitted to vary in HN also with this defini- 
tion. We have (using the notation of the previous section), 

THEOREM (F, F) .  Let h be a functional regular for the two 3.2. Suppose that 8 = 

sample problem and F. Then, 

PROOF. In  view of our characterization of the conditional distribution of 
F, given H, if 8 = (F, F) Theorem 3.2 is an immediate consequence of Theorem 
3.1 and, 

Assertion (3.7 ) is nothing else than the Glivenko-Cantelli theorem for vector 
variables. Theorem 3.2 is proved. 

Put  more prosaically our theorem states that for almost all sample sequences 
the conditional distributions of h(XN( ., . ) ) given HN (which do not depend on 8) 
converge to the same limiting distribution, that of h(X( ., .) ), when pp holds on 
(QF ,ZF). The final dependence on 8 of course appears because of the dependence 
of HN on 8. I t  seems worth noting that the restriction of regularity for the two 
sample problem on h may be dropped if the a-field is completed with respect to 
Pe since we have remarked that given HN ,F, and G, can take on only finitely 
many values and consequently the conditional distribution of h given H N  is well 
defined. We can now establish, 

THEOREM3.3. The sequence of tests (cp,,,) satisjies (2.1) and (2.2). 
PROOF. AS we noted previously, (2.1) clearly holds. Let h(q) = Ilqll. h is con- 

tinuous on all of m(Rp)  and easily satisfies (i). 
Now, 

a ) )  ~ m n ~ ' ] '(3.8) ~ ( X N ( . ,  = /IFm- GnII. 

Then for every distribution function H on RP, a > 0 there exists a unique finite 
smallest c(H, a ) ,  0 5 Y(H, a )  2 1, such that, 

(3.9) pa(h(X(.,  - 1 )  > C(H, a ) )  + Y(H, a)pa(h(X(. ,  = c(H, a ) ]  = a. 

From (3.9) and (3.6) we see that if 8 = (F, F ) ,  

(3.10) (mn(m + ~)- ' )+C,(H~)--+ c(F, a )  a s .  Po 

where cN(HN) is given by (2.7), (2.8). 
Now, suppose 0 = (F, G), F # G. Without loss of generality let us assume that 
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mN-I --t X, where 0 5 X 5 1.Define, 

(3.11) 	 H = XF + (1 - X)G. 

By the Glivenko-Cantelli theorem in this case, 

(3.12) Ps[llFm- FI1 -+ 01 = Pe[llGn - GI1 --t 0] = 1 

and hence, 

(3.13) 	 Pe[lIHN - HI/ -+ 0] = 1. 

An application of Theorem 3.1 identical to that used to obtain Theorem 3.2 and 
(3.10) now enables us to conclude that, 

(3.14) (mn(m + n)-'}' cN(HN) -+ c(H, a) a . ~ .PO. 

On the other hand by (3.12), 

(3.15) /IFm- Gn/l-+ ]IF- GI1 > 0 a.s. Pe . 
Of course, (3.14) and (3.15) imply that, 

(3.16) ~m,n(Xl,  . ,YI , . . . ) -+ 1 a.s. Pe 

if F # G. Theorem 3.3 follows. 
There are many possible choices of p,,, satisfying (2.1) and (2.2)) some per- 

haps based on statistics having a limiting distribution independent of F if 19 = 
(F, F) .  Certainly plausible statistics whose distribution is more invariant than 
that of d(Fm , G,) can readily be defined (see for instance Weiss [20] and Vincze 
[IS]). We hope to investigate this question in a later paper. We remark that. 
Theorems 3.2 and 3.3 are of some interest even in the case p = 1 since the test 
cp,,, which for F continuous is the usual Smirnov test is also distribution free 
when the underlying distribution is discrete, vie. when there are ties. Unfortu- 
nately, and this is, of course, the principal difficulty in higher dimensions, the 
limiting value of the cut-off point of the test depends on F if F is not continuous. 

From Theorem 3.3 we immediately deduce, 
THEOREM3.4. If h satisjies the hypotheses of Theorem 3.2 and 0 = (F, F )  then 

(3.17) A{ce(h(X~(. ,  . I)), . ) ) ) I& F ( ~ ( I (  --t 0.' 9  

PROOF. Let, 

(3.18) *N(s, HN) = E(exp is ~ ( X N ( . ,  . ) )  I HN). 

Then, 

(3.19) Ps[QN(s, HN) -+ EF{exp is h(X(. ,  . ) ) I  V S] = 1. 

Theorem 3.4 follows upon applying the dominated convergence theorem to the 
variables \kN(s, HN). From Theorem 3.4 we can derive Dudley's Theorem 2 [6]. 
Let, 

(3.20) z m ( t ,u) = m f ( ~ , ( t ,w )  - F(t ,  w ) ) .  
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We shall say h is regular for the one sample problem and F if h is regular for F and 
h(X,( .,w ) ) is measurable in w. 

THEOREM2. If h is regular for the one sample problem and F and 0 = (F,  F )  
then, 

PROOF. By Proposition 1of [61 we need only consider h continuous on x ( R p ) .  
For such an h, if 0 = (F, F ) ,  

(m fixed) by the Glivenko-Cantelli theorem. Therefore any limit law stochastic 
or substochastic of the sequence &e{h(X,( ., ))} as m --t w is a limit law of the 
sequence Ce{h(X( a ,  . ) )) as m, n both --+ a.Theorem 2 follows. Of course, 
Theorem 3.3 could have been derived from Theorem 2. 

From Theorem 2 one can, of course, derive Theorem 2 of [ l l ]  by applying the 
former to the functionals h(q) = l l q l l  and h(q) = llmax (q, 0)1[. The limiting 
law of our test statistics {mn(m f n)-'1' 1 1  Fm- Grill under 0 = (F, F )  given H N  

is then identified as being the same as the distribution given in [ll],  and Theorem 
1 of [ l l ]  and 1-m of [lo] may be employed to give some information about 
c(F, a).It seems plausible that one can obtain bounds similar to those of [lo] 
and [ l l ]  for the conditional distribution of {mn(m + n)-'lfd ( F ,  ,G,) in terms 
of H N  but we have not attempted to do so. Finally, we note that Theorems 2 and 
3.2 imply that the expressions for the limit law of m'jj~, - Fjl if p = 1given 
by (Schmid [15]) apply in our case also. 

4. Some results on sampling without replacement. The lemmas of this section 
play a fundamental role in the proof of Theorem 3.1 given in the next three 
sections. In  order to place Lemmas 4.6 and 4.7 in the scheme of things i t  may be 
worthwhile to read Sections 6 and 7 first. 

Let V1N , - ,VNN be a sample taken in order from a finite population + 

C ~ N, ,CNN without replacement, vie. P[(VW, + + , VNN) = (cilN7 - - - ,+ 

CiN~)]= [N!]-l for every permutation (il , - . . , iN)  of (1, . . - ,N ) .  Suppose xT=lC ~ N= 0. Then, we have, 
LEMMA4.1. (HAjek [8]). Let VIN , . . , VNN, { c ~ N )be as above. Let (diN), 1 5 

i 5 N, be another sequence of constants such that Z?=IdiN = 0. 
Suppose N-l Cy=lc ~ N-+ u2, C?-ld:N --t K. Then, 

if 1 

(4.2) (a )  (b )~ - ~ m a x l ~ i N l - + ~ ,  maxldiNl--t0, 
and 

for every T > 0, where BNi = C ~ NdjN. 
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Another useful result also due to (Hftjek [9] ) is, 

LEMMA4.2. (Hftjek). Let (ViNj, ( c ~ N J  be as above. Suppose Sj = x:=lViN. 


Then, 

for every r 2 0, 1 5 n 5 N ,  e > 0. 
This lemma is of little value if n is close to N. To deal with that situation 

we need inequalities of the type given in Lemma 4.3. 
LEMMA4.3. Under the assumption of Lemma 4.2 suppose kl 5 n < k(l + 1 )  

where k 2 2, N L n, 1 2 1. Then there exists c(k, r )  such that, 

PROOF.Suppose n = kl + d. Then, 

+P[maxkz<jcn[Skz+ ( S j  - Skz)[ L 
But, 

Hence, if 0 5 d < k 5 kl we have, 

and we need establish the lemma only for n = kl. We proceed by induction. 
If k = 2, 

by Lemma 4.2. The induction step is given by (4.6) and (4.7) with d = 1. 
We will also need, 
LEMMA4.4. (Wald-Wolfowitz-Noether-Hoeffding.) Suppose the c i ~  satisfy 

the hypotheses of Lemma 4.1 as well as (4.2) (a) ,  S, is as in Lemma 4.2, and 
n/N-+X,O < X < 1. T h e n a s N - +  w ,  

where pzk is the 2kth central moment of the standard normal distribution. 
A proof of Lemma 4.4 may be found in [7] pp 237-239. 
Before giving the main results of this section we state and prove an auxiliary 

lemma. Our techniques in this and the succeeding lemma are similar to those 
used by HBjek in [9] and by Kiefer and Wolfowitz in [ll] .  
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LEMMA 1 S i 5 N ,  be as above. Then, 4.5. Let ( V i N ] ,  

p [ x ! % l  VkN 

(4.11) < Q ( V I N , * ~ . , V ~ N ) I V ~ N , ~ ~ ~ , V T N I5 ~ ( V W , ' " , ~ T N )  

+ m S r ( N  - r )-'1-'m(1 - m ( N  - r )-')( N  - r )-' x?=lc?N 

for any g ( V I N ,  - - ,V r N )  such that ~ ( V I N ,  - r)-' < 0.. . . , V r N )+ mS,(N 
PROOF. Given VIN, - . ,V r Nthe VkN with k > r are distributed as a sample + 

without replacement from the population of size N - r whose members c is ,  
i = 1, . . ,N - r, are the c i ~which have not appeared among the ViLvwith 
i $ r. Then 

Chebyshev's inequality applied to the left-hand side of (4.11) gives, 

Finally, 

The final results of this section are further extensions of Lemmas 4.2 and 4.3 
which are central to our argument. Let S be a fixed subset with n members 
(n  5 N )  of the set of all ordered p-tuples ( 6 , - - - ,i,) where the ij may range 
independently over 1, - . . ,N .  Now, relabel V I N, .. ,V,N as V(i l,...,i,) where 
(il, .. ,i,) ranges over S .  We shall call such sets S ,  configurations. Define, 

where j = ( j l , .. . ,j,) is a vector with natural number entries and A(j )  is 
defined in Section 2. 

Define, 

and 

(4.17) b (y ,  r )  = 1 - n ( N  - n)-'[a(y,  C?=lc T N .  

Choosey so that y $ 1 - n ( N  - n)-' and b(y , y 8 r )  > 0 for 0 5 s $ p - 2. 
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We have, 
LEMMA4.6 Under the above assumptions, if p 2 2, n < N, and r > 0, 

(4.18) P[max(lS(il,...,i,)l: 1 5  ij 5 N , j  = 1, ... , p )  2. r] 

5 (nfi:b-l(y, y 8 ~ ) )  E ~ s , ~ ~ [ ~ ~ - ~ ~ ] - "  

PROOF.We prove the lemma for p = 2. The general case follows by an induc- 
tion which we leave to the reader. 

Let ti be the smallest i such that S(i,j) 2 e for some 1 5 j 5 N if such an i 
exists. Otherwise let tl = a. Let t2 be the largest j, 1 5 j 5 N, such 
that S(tl,j) 2 c, if ti < a .Otherwise let t2 = .Then, 

P [ m a ~ { S ( i , ~ )  	 5 N }  2 E]: 1 5 i 5 	N, 1 5 j 

(4.19) 	 = xf-1P[tl = L] 

5 CZ-IPlti = k, S(N, < ye] + P[S(N,t 2 )  2 ye, ti < a]t , )  

5 xf-1P[S(N,t,) < ye, ti = L] f P[maxljjlN s ( N , i )  2 ye]. 

But, 

where P[. I .] denotes as usual a conditional probability. For convenience denote 
the conditioning event in (4.20) by A. 

Let n(i, j )  be the number of summands in S(i,j) and define, 

By definition of t2 we have S(t, ,N)5 S(tl,t,) and therefore, 

Applying Lemma 4.5 to the right-hand side of (4.22) we obtain, 

But, 

(4.24) 



12 P. J. BICKEL 

and S(tl,t2)2 e. From these remarks we conclude, 

P[s(~,t,)< ye I A] 

(4.25) i, ([Y- (1  - n(N - n)-')~e]-~n(N n)-' c:N,- x?='=l 
for y 5 1 - n(N - n)-I, 

Substituting (4.25) in (4.20) we get, 

(4.26) P[s(~,t,) = k]< ye, t l  

5 P[tl = k] ([y - (1 - n(N - n)-')~e}-~n(N- n)-' Z?=Ic!~. 

Finally, from (4.19) and (4.26) 

Applying (4.27) to sampling from the population ( -GIN , . . , -cNN) adding 
the resulting inequalities and transposing we obtain, 

(4.28) P[ma~(lS( i ,~) l :  5 N} 2 el1 5 i 5 N, 1 S j 

5 b-'(~, e ) P [ m a x ~ ~ j $ ~ J S ( ~ , j ) \2 ~ € 1 .  
The proof for p = 2 is finished upon applying Lemma 4.2 to the right hand side 
of (4.28).1 

It is important to note that the right hand side of (4.18) depends only on the 
C<N and n and is independent of the configuration chosen. 

Finally Lemma 4.7 extends Lemma 4.3. We use the notation of Lemma 4.6. 
LEMMA4.7. Under the assumptions of Lemma 4.6 there exist c(k, r) ,  X(k) such 

that, ij kl 5 n < k(l + I ) ,  k 2 3, r > 0, and 1 L 1, then 

PROOF.With our new notation the argument is in fact simpler than that given 
for Lemma 4.3. Suppose n = kl + dl with 0 i, d < k $ I. Divide Sinto (k + 1 )  
subsets s('),. . ,s(~+')such that s"',. . . ,8'" have I members each while 
s'~+''has d members. Define, 

(4.30) ~ ( t )  = V(il,...rip)( j l ,...,j,) Cril,...,ip)~[~(j)ln~(t) 

where j = (jl , . . . ,j,) fort = 1, ,k + 1. Then, 

(4.31) S(il,...,ip) = Cg; 8::;,...,ip) , 
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Since each s'~'is a configuration with 5 1 members, we have for suitable y, by 
Lemma 4.6, 

( I t  is clear that the bound on the right hand side of (4.18) continues to be valid 
if the number of members of S is 5 n.) Since k 1 3 we may take y = $ and 
hence X(k) = [16(k - l ) ( k  + I)~]-' and c(k, r )  = (k + 1)r+14r'p-1' will do. 
If I < k a further obvious decomposition of s'"+"will complete the proof. 

Both Lemma 4.3 and this lemma will be used for k = 3 only. 

5. Proof of Theorem 3.1: Initial considerations and enumeration of cases. I t  
follows from the work of Dudley (Theorem 1 and Proposition 1 of 161) that to 
establish Theorem 3.1 we need only show, 

( i) Finite dimensional convergence : 

as N + co ,for all t'", . . , t"' E RP. (AS usual, .G (xN(t'l), .), . . ) is the joint 
law of the variable xN(t"', . ), . . ,xN(t'", ),. ) when P holds while ~ ~ ( ~ ( t ' l ' ,  

. ) is the law of the variables ~ ( t " ' ,  ), . . ,~ ( t ' " ,. ) when pa is the measu~e 
on Qa .) 

(ii) Tightness: For every c > 0, 6 > 0, there exists a compact subset K of 
Qa such that, 

for all N suficiently large (m, n large), where 

K' = (fE 3n(Rp): I l f  - gll 5 6 for some g E Kf.  

(We need not introduce outer probabilities because our processes XN take on 
only a finite number of values.) 

PROOF (i). If A is a Bore1 subset of Rp let us define OF 

Similarly, we shall talk about G,(A, ), HN(A, ) and H(A ). Then, (5.1 ) will 
follow if we show that for any s disjoint rectangles A1 , . . ,A, of RP such that 
0 < H(Ai)  < 1, 1 5 i 6 s, we have, 

where X(A1), , X ( A , )  are Gaussian with mean 0 and Cov (X(Ai), 
X(Aj ) )  = H(Ai n Ai) - H(Ai)H(A,). 
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Let 

(5.5) 

if P i N  has been selected among the sample of m, 

= - (mn-')"m + n)-', otherwise. 

Then, 

(5.6) P[x,(A~, = qi, 1 -i i -i S]a )  

= P[xpjNcAi Z j  = qi, 1 5 i 5 SI. 

Let 

Let VIN , - . . , VNN be obtained as in Lemma 4.2. Then, 

From (5.8) 

where d i ~= N'(A~ - xL.1XkHN(Ak)) if NHN(C5Z A j) 

~ ~ S N H N ( ~ ; , ~ A ~ )1 $ k S s ,for 

= 0 otherwise. 

It readily follows that c i ~  , diN as given satisfy (4.2) and (4.3). Then (5.4) 
is a consequence of (5.9) and Lemma 4.2. 
PROOFOF (ii). We prove assertion (ii) in four steps. We shall show that the 

assertion holds, 
(a) For H which are continuous and such that at  least one marginal of H 

is the uniform distribution on [0, 11; 
(b) For H which are continuous and such that at least one marginal of H 

is strictly increasing in [0, 11; 
(c) For H which are continuous; 
(d) For arbitrary H. 
The next section deals with cases (a) and (b)  while the final section has 

cases (c) and (d). 
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6. Proof of Theorem 3.1: Cases (iia) and (iib). We note first that in all cases it 
suffices to prove the result for sequences HN such that all the Pi, fall in IP= 

{t:  lltll 5 l}where lltll = maxljijp jtil . To see this let q be any 1 - 1map of 
R onto (0, 1)  which is a homeomorphism. 

If (Pi,], {HN}, H are given let (P?,] be the sequence of points in IPobtained 
by transforming each coordinate of Pi, by q, and let H,* be the associated se- 
quence of distribution functions. Clearly if I I H N  -HI1 -+ 0, then I IH,* - H*I 1 -+ 
0 where H* is the distribution function of a measure concentrated on IPsuch 
that, if q-'(t) = (q-l(tl), . . , q-'(t,)), 

for t in the interior of IP.I t  is easy to see now that if h is any functional regular 
for H ,  then there exists a functional h* regular for H* such that, 

and 

Our assertion follows and in the sequel we shall limit ourselves to sequences 
(Pi,] falling in IP.For cases (a) ,  ( b  ) and (c), we conclude from Proposition 2 
of [6] that, in view of (i),  to establish (ii) we need only show that, 

5 6, s, t E IP]2 e] = 0 for every E > 0. 

PROOFOF (a).  We need a lemma. 
LEMMA 5.1 Let A(s, 6) = IP: - sll 5 61. Then (6.4) holds if { t ~  t 2 S, Ilt 

PROOF.Without loss of generality consider the particular sequence 6, = 
m -1 -+ 0. Decompose IPinto the mp cubes whose vertices are lattice points of 
the form mF1(jl, , j,), 0 5 ji 5 m. Then, 

where el , . . . , empare the "smallest" vertices of the mp cubes we are consid- 
ering.0 

Let B(s, t )  = {v:s < v S t] if t > s, where < corresponds to strict inequality 
for all coordinates. More generally, let T be the set of all sub collections of the 
natural numbers 1, . . , p. Denote such a collection by {il, . , i,]. If t 2 s let 
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B(s,  t, {ill , i,]) = { V E  IP:v = (81, . . .  ,up), 

v 5 t,vk > sk if k e { i l ,  , ir},vk 5 sk otherwise}. 

Thus B(s, t )  = B(s,  t, (1, ,p]) .  Then, 

It follows that to prove (6.5) we need only establish 

(6.8) lims-o gplim sup,,, supsErp 

P[sup {IXN(B(s, t, (il , . . . ,i,} ), .11: t & A(s,  611 2 €1 = 0 

for every {il, . . . ,i,},E > 0. 
We give the argument for {il, .. . , i,} = 11, . ,p}. The same proof holds 

for the general case. 
We return to  the notation of Section 4 but suppose throughout that c i ~  is 

given by (5.7). We have, 

(6.9) 	 P[sup {IXN(B(s, t ) ,  )I: t e A ( s ,  6)} 2 el 

5 ~ [ m a xN-' {lSil,...,C J :  1 5 ij 5 N, 1 5 j 5 p] 2 e] 

where 6 = (6, - . . ,6) and the subset S of Lemma 4.6 is defined as follows. 
I/Iove the NHN(B(s, s + 6) ) points in B(s, s + 6) whose position is given 

by HNto points on the lattice of points of the form (il , . . , i,) with 1 5 ij 5 
NHN(B(s, s + 6)) ,  1 5 j 5 p, in such a way as to preserve the strict order 
relationships between the coordinates of these NHN(B(s, s + 6 ) )  points. I t  
is permissible to move ties to distinct points. Let S be the set of all 
points (il , . , i,) which are obtained in this fashion from the points { P i N } .  

(The inequality in (5.18) is an equality if there are no duplicates among the 
points Pi, .) 

Now, if lim sup nN-' 5 6 it is easy to see that, 

(6.10) lim infNb(7, N'E) 2 1- 6(1 - 8)-'[(1 - 6(1 - 6)-l - -y)e]-l. 

If H has a uniform marginal then H(B(s ,  s + 6 ) )  5 6 and by assumption, 

(6.11) sup {HN(B(s, s + 6)): s e l p ]  -+ sup {H(B(s ,  s + 6): s e l p }  5 6. 

Applying Lemma 4.5 to the right hand side of (6.9) and using (6.10), (6.11) 
we obtain 

for suitable 7, where nl = NHN(B(s, s + 6) ). But by Lemma 4.4 if (6.11 ) holds, 

(6.13) 	 lim supN rkE(S,,)2k 5 6jtpzk . 
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From (6.12) and (6.13) we conclude that in case (a) ,  

(6.14) lim sup, SUPSel~P[SUP {IXN(B(S, t ), .I :t E A (s, 6)I 2 €1 

for 6 so small that we can take 7 = 3. Taking Ic = p + 1we see that (6.5) is 
satisfied. Theorem 3.1 is proved in case (a).  

PROOFFOR CASE (b). Without loss of generality suppose q(t) = H(t, a ,  
. . . , m ) is continuous and strictly increasing on [0, 11. Let P:, be the point 
obtained by transforming the first co-ordinate of Pi, by q and leaving the others 
unchanged. If we now define H/, F,', G,', and X/ suitably i t  is clear that, 

where ~ ' ( t ,  m, . . , .o ) = t for 0 5 t 5 1.Therefore, from case (a),  the process 
X/ satisfies the tightness condition (6.4). But, 

= sup {~xnr ' (~- ' (s) ,  . )  - x/(q-'(t), . )I: l l -~ tll 5 61 

where 

In  view of (6.16) and the continuity of q-' we see that the theorem holds in 
case (b) .  

7. Proof of Theorem 3.1: Cases (iic) and (iid). If q(t) is as above we say s is 
a point of increase of q if t # s * q(t) # q(s). We say s is a point of increase 
if its first co-ordinate is a point of increase of q. An examination of the arguments 
used for case ( b )  will show that they serve to establish the theorem even if q 
is not strictly increasing as long as the Pi, are all points of increase. We need 
only note that the sup on the right hand side of (6.16) can be taken just over 
the set of all s, t whose first coordinates are points of increase of q. 

If N is fixed, let A"' be the set of all Pi, which are points of increase and A"' 
be the set of all the other Pi,. Call the number of members of N'~', and 
if N';' > 0 let H,'~' be the distribution function of the measure assigning mass 
[N'~']-' to each point of A'~ ' ,while if N'~'= 0 let H,'~' = 0. Let M,'~' be the 
(random) number of points of the sample which fall in A'~' ,and if M,'~' > 0 
let F,'~' be the distribution function of the measure which assigns mass [M,"']-' 
to each point of the sample falling in Otherwise let F,'~' = 0. Define GN(O 
similarly and let, 

(7.1 ) x,(')(t, .) = {M,(')(N(~)- M,"))-'I3 [N"']' [FN("(t, .) 

- HN(')(t, .)] if M,") and N"' - M,'" > 0 

= 0 otherwise. 
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Then, 
(1) ~ ( 1 '-

X N ( ~ ,  1 = [MN ( M,"' )/mnlf (N")N-' )' xN"' ( t ,  

(7 -2 )  f ( m / n ) " ' ( ~ ~ ( ' ' m - ' )  - (N("N-')  H,(" ( t) 

+ ( m / n)' N ' ( M ~ ( ~ ' ~ - ' )F,'~' ( t , - ) 

- ( N ( ~ ) N - ~ )  . )).~ , ( ~ ' ( t ,  

It is easy to see that (N"'N-') -+ 1 as N -+ oo. Furthermore since M,"' 
has a hypergeometric distribution we can readily calculate 

(7.3 ) E{(mn-' )' ~ ' ( ~ ~ ( ' ' r n - ' )(N(''N-')]-

From (7.2)we conclude that to establish (6.4) in case (c )  we need only show, 

(7.4) lims lim sup, P[max { l ~ N " ' ( t ,  .) 
- x N ( " ( s ,. ) I :  [ I S - t[l 5 8,  S ,  t..?IP] 2 e] = 0 

and 

- N ' ~ ' N - ' H ~ ' ~ ' ( ~ , . ) I ~ E I ~ ]Z e ] = O  forevery e > 0 .  

Now note that given the sequence of variables MN"', the "distribution" of 
the stochastic processes x,"' ( .) is the same as that of a sequence of processes a ,  

X N ( ., ) based on taking a sample of size M,(" from the N"' points {Pi,] lying 
in A"'. Since the HN function corresponding to these points (which is just 
H,"') tends to H in norm and since all of the Pi, in A"' are points of increase 
we may conclude from our extension of case ( b )  that for every k > 0 there 
exists a 8' > 0 and natural numbers m' and n' such that if m' 5 r 5 N"', N"' 
- r 2 n', 8 5 6' then, 

(7.6) P[rnax {~x,"'(s,- . I. ) x,(')(t,) : S ,  t E I P ,  

11s - t [ [r 81 2 e 1 ~ ~ " =' r] 5 e'. 

Since both M,") and N"' - M,(" -+ in probability as N -+ a we see that 
(7.6) implies (7.4).Similarly we see that 

(7.7) P[sup { (mn-')"I (~N '~ ' rn - ' )F,(~' ( t , .) 
( 2 )- N(~)N- '~ , ( ~ ' ( t , . ):t &IP]2 e M,(~' = r] 5 P[SUP{[S(il,1 1 

+ n( i1 ,  . . ,i,) a(?, N ) I :  1 5 i j 5 N'2',j = 1 ,  . . ,p] 2 e l ,  

(7 .8)  a(r ,  N )  = N4 [N(~']-'[r(nm-')' - ( N ( ~ '- r)(mn-')'I 
( 2 )and {S( i , ,...,i,)] is the collection of partial sums based on a configuration of 

N ' ~ 'points with selection from a finite population with N ' ~ 'members whose 
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values are given by, 

(7.9) c i ? =  (nm- '> ) ' h r5 -a ( r ,N)  for i = l , . . -, r, 

~ ( 2 )= (mn-I)' hrf - a(r,  N )  for i = r + 1, . , . 
Then, 

and 

Let us now apply Lemma 4.7 to the configuration of A '~ 'with k = 3 and 
r = 2,if N'~'2 3. 

where is the sum of a sample of I from the population {c!?). Of course, 

(7.13) 	 E ( s ~ ' ) ~5 + x$:)[cI:l2. 
Now, if (rm-') -+ 0 and (N'~' - r)(n-') 4 0 we see that, 

Hence, for N'~'2 3, i t  follows that if 

in probability, (7.5) will follow from (7.7) and (7.11)-(7.14). However, (7.15) 
and (7.16) follow by a calculation like (7.3). Of course, if N'~'5 3, (7.5) follows 
trivially. The proof of case (c) is complete. 

PROOFFOR CASE (d). For every {ill. . - , i,} E T there exist a t  most a de- 
numerable set of hyperplanes of the form {t:ti, = aij) which are assigned positive 
measure by H. Let us for simplicity label all of these hyperplanes by El ,E2 , . . . 
Let Eo = RP. For every i 2 0, let Ki  be the union of all E j properly included in 
Ei . Let Ni be the numbers of points PjNwhich fall in (Ei  - Ki) and if Ni > 0 
let HNibe the distribution function of the measure which assigns mass [Nil-' 
to  each point PjNwhich falls in (Ei  - Ki). If Ni = 0 let HNi = 0. Similarly, 
let MNi be the number of points of the sample falling in (Ei - Ki) and define 
F,i to be distribution functions of the measure assigning mass to each 1 ~ ~ i 1 - l  

such point if MNi > 0 and to be = 0 otherwise. Finally let, 

We begin by proving case (d )  when there are only a finite number say J 
of the Ei and H(Ei  - Ki) > 0 for i = 1, , J .  
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Write 

(7.18) X N ( ~ ,) = C:=1 {[MNi(Ni - ~Ni)(mn)-']"NiN-')-' XNi(t, ' )  

+ (mn-')"*(MNim-' - N~N-') HNi(t)J.  

Note first that, 

uniformly in t E IPwhere Hi  is the distribution function of the measure assigned 
by H to Ei - Ki  divided by H ( E i  - Ki). Further, by a calculation such as 
(7.3)) since NiN-' -+ H ( E i  - Ki) we see that, 

(7.20) MNim-' -+ H ( E i  - Ki) 

in probability and in fact, 

(7.21 ) (mn-')"*(MNim-' - NiN-') = 0,(1), 

(is bounded in probability). 
Since the map (fl , , fJ) 4 alfl + . + ajfj of %(Ip)  x x %(Ip)  4 

M ( I p )  is continuous in / I .  1 1  we see that to prove (5.2) we need only show that, 
for every E > 0, 6 > 0, 1 6 i 5 J, there exists a compact K c QH such that, 

and 

(7.23) P[&:(mn-'1' -N~N-') HNi(*) E K'] 2 1 - EN + ( M ~ ~ ( G ) ~ - '  

for all m, n sufficiently large. Now, (7.19) and (7.21) suffice to establish (7.23). 
For simplicity we shall prove (7.22) when Ei = {t:  t, = 0).  The proof of the 

general case is analogous. Define 

It is easy to see that given MNi = mi,  the stochastic process gNi(t1, . ,tpPl , ) 
is distributed as an XN(t, ) process based on a configuration of Ni points in 
R~-' with distribution function gNigiven by 

Of course, 

(7.26) BNi(t1, . , tp-1) 4 gi ( t1 ,  . ) tp-1) = Hi(t1, . . . , tp-I, 0 

and by construction ai is continuous on I~-'.Since MNi -+ a in probability 
as does Ni - MNi, and since case (c )  has been established for all p we conclude 
that, 

lim SUP,,, {IfiNi(s, )(7.27) l i ~  P~SUP - xivi(t, . )I : 11s - tll 
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and hence by Dudley's Proposition 2 [6], for every e > 0, e > 0 there exists a 
compact subset Ki  of &Aisuch that 

8(7.28) 	 P[&: T N i ( - ,  ij) e ~ i ]  2 E 2 
... . 

for all m, n sufficiently large. (n'ote that K? c %(Ip-').) Now, the map T of 
%(Ip)  into %(Ip-') which is defined by, 

(7.29) Tf(f1, . . a  , trl) = f(t1, , t,~, 0 ). . a  

is continuous in I I .II and hence (7.28) implies (7.22). 
To complete the proof of case (d )  we must finally deal with the possibility 

that some of the H(E i  - Ki)  = 0 and that J = a,. Let il,iz, . . . be the se- 
quence of indices such that H(E:, - Ki,) > 0. 
Write, 

(7.30) 	 X N ( ~ ,) = z$1X,ij(t, ) [(MNij(Nij - JfNij) 

(mn)-'1' (NijN-')-'] + R N A ( ~ ,). 

From our previous assertions it is evident that (5.2) will follow in this general 
case if we can show that for every e > 0, 6 > 0, there exists an A < a, such that 

for all m, n sufficiently large. 
Let, 

(7.32) 	 g(A ) = C:=*+IH(Eij  Kij) 

and NgN(A) equal the number of P < N  which are not in U$=1 (Eij - Kci). Evi- 
dently, 

(7.33) gN(A) 4 g(A) 	 as N 4 a, and, 

(7.34) 	 g(A) 4 0 as A 4 a,. 

We argue as in the proof of (7.5). Let M~~ be the number of points in the 
sample which are not in U$=1 (Eij - Ki,). Then, 

where S(tl,...,ip) are partial sums corresponding to a configuration of NgN(A) 
points and sampling from a population of NgN(A) numbers (ciN(r)] which are 
given by, 

(7.36) 	 c & ( r )  = (nm-l)*N3 - a(r, N, A )  for i = 1, . . . ,r 

= - (mn")'N4 - a(r,  N,  A )  for i = r + 1, .. . ,NgN(A) 
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and 

I f  NgN(A) 2 3 we can apply Lemma 4.7 with k = 3 and r = 2 to the right 
hand side of (7.35) and get after some computation, 

. ( 6  + NgN(A ) l a ( ~ N ~ ,  ) I  A 1,N ,  A ) - 2 K ( M ~ A )  
where 

(7.40) K (r  A ), ~ 7 2 1 ~ ' " '= [ c i ~ ( r ) ] ~ .  

Finally, we have, 

and 

(7.42) E ( [ N g N ( A ) a ( M N A ,  = E((mn- ' ) '~ ' (M~*m- '  g , ( ~ ) ) ' )N ,  A ) ] ~ )  -

= gN(A)( l  - gN(A) )N(N- 1)-I 5 2 ~ N ( A )  

for N sufliciently large. From (7.42) we see that, 

(7.43) P[I[NgN(A) ] - ' ~ ( M N ~ ,N ,  A ) /  2 g N i ( ~ ) ]5 2 g N 3 ( ~ ) ,  

(7.44) P[MNAm-' 2 gN(A) + m-*] $ 2gN(A) 

and 

(7.45) P [ ( N ~ N ( A )- MNA)m-' 2 gN(A) + n-'1 S % ( A ) .  

B y  (7.39), (7.41) and (7.43)-(7.45) we obtain, 

for NgN(A) 2 3. Letting N -+ and then A + w we have by (7.33) and (7.34)) 

(7.47) IimA,m lim supNP[sup{ IRNA(t, * ) I  :t E IpJ2 81 = 0 

and this is equivalent to requiring (7.31) for N sufficiently large. The same con- 
clusion evidently holds if NgN(A) < 3. The theorem is proved. 

Acknowledgment. I am grateful to Volker Strassen for a helpful conversation. 
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