
Chapter 1

Texture modelling for noise
removal [DRAFT]

(draft as at 10 February 2004 of a chapter of Paul
Harrison’s PhD Thesis)

The values of pixels in an image may, for various reasons, be known only
imprecisely. If so, the texture of that image may be used to help estimate
the true pixel values. Texture is the interrelation of pixels in an image;
where there is texture, the value of one pixel may give clues as to the values
of other pixels. This chapter describes how to find the most likely pixel
values of an image where only upper and lower bounds on these values are
known, using a texture model.

Imprecise knowledge of an image usually takes the form of an image with
additive noise. This noise might be generated as a result of storing an
image in a lossy format such as JPEG or GIF, introduced while converting
it from analogue to digital form, or produced by an analogue device. The
amount of noise may depend on the position in the image, or even the
content of the image. Restoration of images stored in lossy formats is of
particular interest, given the large number of these images that now exist
(for example, on the World-Wide Web).

The novel feature introduced in this chapter, as compared to other methods
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of noise removal, is the use of texture models tailored to individual images.
The kind of textural details seen in an un-degraded part of an image may
reasonably be expected to occur in degraded parts. Texture that occurs in
the form of large variations may also occur in small details occluded by
noise. These ideas can be expressed in terms of texture modelling, allowing
more accurate restoration of images.

To attempt removal of additive noise from an image, two things must first
be stated:

1. The set of possible values for each pixel, and how likely each of these
values is (in other words, the amount and nature of noise).

2. The ways in which pixels may be related to one another (in other
words, what kinds of texture the image may have).

Given these two statements, the most likely image and image texture may
be found. The way the two statements are made is crucial. They must be
precise enough that the result is useful, but must also be stated in a way
that affords computation of the result in reasonable time. The difficulty lies
in finding a useful trade-off between these two constaints. A variety of
approaches have been proposed.

Linear filtering is a straightforward approach. It derives from stating that
elements in the Fourier transforms of the image (signal) and the
uncertainty about the image (noise) will have Gaussian distribution. The
elements’ variances (the expected “spectral density”) are estimated, and
from these an optimal “Weiner” filter is derived [Helstrom, 1990]. This
filter is always linear. In the case of additive noise, it might be estimated
that the image does not contain high frequencies (is smooth), while the
noise is white. This produces a low-pass filter.

A low-pass filter will soften any sharp edges in an image, so this method is
of limited use for additive noise. The limitations of linear filtering led to
investigation of non-linear filters.

Non-linear approaches vary in complexity and theoretical rigour. “Selective
Gaussian Blur” is an example of a simple but effective non-linear filter [van
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Os, 1999]. It is based on Gaussian blurring, but preserves sharp edges. The
input image is blurred, and the blurred image compared to the input.
Where the blurred image is close in value (within a specified range) to the
input, the blurred pixel value is used, otherwise the input pixel value is
used. This is an ad-hoc but useful variation on linear filtering. It is also
fast.

A more sophisticated method based on minimizing the “Total Variation”
was developed for the US military [Rudin et al., 1992]. The Total Variation
method models the texture of the image as tending to have small gradient
at each point. The magnitude of the gradient is assumed to have an
exponential distribution. Noise is modelled as being Gaussian. Finding the
most likely true image involves minimizing a norm similar to L1 subject to
the constaint that the noise removed has an apriori specified variance.

The texture model of the Total Variation method, by using an L1-like
norm, rates smooth gradients and sharp edges as being equally likely.
Consequentially, the Total Variation method preserves sharp edges in an
image. A texture model that made a more traditional assumption of a
Gaussian distribution of gradients would prefer smooth gradients to sharp
edges. The Total Variation method is reported to beat the human eye in
extracting the features of a noisy image.

Specialized methods have been designed to remove the noise introduced by
JPEG compression [Zakhor, 1992, Yang et al., 1993, Llados-Bernaus et al.,
1998, Meier, 1999]. JPEG breaks an image into 8× 8 pixel blocks and
performs a Discrete Cosine Transform on each block. The output of the
transform is quantized and stored concisely. When decoding JPEG images,
there is uncertainty as to the true value of each element in the block
transforms due to quantization. JPEG decoders assume that each element
is independant, and for each element minimize the expected error by
choosing the centre of the range of possible values. This is a reasonable
assumption, as the purpose of the DCT is to decorrelate each 8× 8 block.
However the DCT ignores correlations between adjacent blocks, and the
decoder may produce visible block borders if the quantization level is too
high.

The method of Llados-Bernaus et al. [1998] is typical of JPEG restoration
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methods. As in the Total Variation method, this method minimizes a norm
subject to constraints. The image is taken to be more likely to be smooth
than rough, including across block boundaries. Therefore, differences
between neighbouring pixels are expected to be small. Penalties are
imposed on each difference by the use of a “Huber function”, and these
penalties are added to give a measure of how unlikely a particular
reconstruction is. Huber functions are a compromise between the L2 and L1

norms, combining the smoothness of L2 with the robustness of L1. They
correspond to a Gaussian distribution of values with fat tails. The pixel
values are constrained such that the DCT transform elements, when
quantized, match the file being decoded.

All of the approaches to noise removal above treat the texture of an image
simply. They assert that the image is more likely to be smooth than rough
in texture, and to possibly contain edges. No attempt is made to adapt to
the texture of individual images. Consequentially, all methods in this
paradigm will always reduce the amount of variation in an image. For
example, they will all always dull reflective highlights.

The above approaches may be improved apon by tayloring a texture model
to each image. This chapter considers the following choice of statements:

1. Each pixel values lies within a specific range, but is equally likely to
take any value within that range.

2. The image has texture that may be described in terms of causal
prediction.

The next two sections detail and justify this choice.

1.1 Pixel values

Each pixel value is taken to lie within a specific range, but to be equally
likely to take any value within that range. This choice does not compete
with the texture model to explain small variations, where noise will mean
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that almost nothing is known anyway. However it totally rules out
consideration of large changes to pixel values, so the texture model need
not model large changes, such as edges, with total accuracy.

The pixel ranges may be unbounded on one or both sides. For example, a
photograph may have been over-exposed when it was taken. Within regions
of over-exposure it is known only that the true pixel values exceed a certain
amount. There may also be artifacts such as spots obscuring parts of the
image. A pixel within this kind of area may be considered to be equally
likely to take any value. This is similar to the technique for removing
objects from images in Chapter ??, but unlike the technique of Chapter ??
it allows extrapolation of texture.

1.2 The texture model

A texture model defines the likelyhood of an image, given that it has a
certain texture. Let I be an image with texture model M . The most likely
texture and image are sought, P (M ∩ I) is to be maximized:

P (M ∩ I) = P (M)P (I|M) (1.1)

If it is assumed each model is equally likely, P (M) is constant and
maximizing P (I|M) will maximize P (I ∩D). This is the well known
Maximum Likelyhood method.

If an ordering of pixels in the image is chosen (for example, raster scan
order), P (I|M) may be written in terms of the conditional probability of
each pixel taking a certain value, given the preceding pixel values and the
texture model:

P (I|M) =
∏

P (pixeli|M ∩ pixel0 ∩ pixel1 ∩ · · · ∩ pixeli−1) (1.2)

A way to compute the likelyhood of a pixel value given the preceding pixels
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values in an ordering therefore constitutes a texture model.

The predicted distribution of pixel values is taken to be Gaussian with
constant variance. With this assumption we need only estimate the mean
expected value of each pixel, and the Maximum Likelyhood method
becomes equivalent to the method of Least Squares (the derivation of this
equivalence is given in Press et al. [1992, pp. 657–659]). Least Squares
requires minimization of the sum of squared differences between a set of
predicted and actual values. This sum is called a “merit function”.

The specific predictor used in this chapter is a weighted sum of a set of
values computed from the anti-causal neighbours of the pixel, with causality
defined by a raster scan ordering. The values might simply be the values of
the pixel’s anti-causal neighbours (producing a linear predictor). Other
values might result from multiplying several values together, or applying
some non-linear function to a value, or combining values in some other way.
With sufficient values, any function of the anti-causal neighbours may be
approximated to arbitrary accuracy with a weighted sum such as this.

Let V1(s) . . . Vn(s) be the set of values used for prediction of the pixel I(s),
and w1 . . . wn be the corresponding weights. Then the merit function is:

Merit =
∑

s∈ΩI

(I(s)− w1V1(s)− w2V2(s) · · · − wnVn(s))2 (1.3)

The weights of the model wi and the pixel values I(s) (within the specified
bounds) are chosen so as to minimize this merit function.

1.3 Optimization algorithm

The merit function may be minimized numerically. An arbitrary initial
image is chosen, then a two step process is followed: first an optimum
model is found given the current image, then an improved image is found
given that model. This process is iterated.

6



Chapter 1 Texture modelling for noise removal [DRAFT]

In the first step, the optimum model for the current image may be found
precisely. When minimized, the merit function will have zero partial
derivative with respect to each model weight. Each partial derivative is a
linear function of the model weights. Equating each derivative to zero gives
a set of linear equations. These may be solved to find the optimum model.

In the second step the optimum image is approximated numerically, as
finding the optimum analytically is difficult. A multigrid method may be
used, as described in Press et al. [1992, pp. 871–887 ]. First a scaled down
image of the input is optimized, then successively larger versions. At each
scale the optimization is performed via gradient descent.

The multigrid method is necessary so that large features can be optimized
within a reasonable time. For example, gradients that have been converted
to a series of steps by palettization (as in Figure 1.3) would take a long
time to optimize at maximum scale.

Three images undergo scaling: an image of the minimum possible values, an
image of the maximum possible values, and the current best estimate of the
optimum image.

The best-estimate image is is scaled up by means of bi-linear interpolation,
and scaled down by its adjoint operator, as in Press et al. [1992, pp.
875–876].

The minimum and maximum images only ever need to be scaled down, as
they are never modified. When scaling down the minimum image, each pixel
in the scaled down image takes the maximum of the nine pixels it overlaps
in the original image (as illustrated in Figure 1.1). Similarly each pixel in
the scaled down maximum image takes the minimum of the nine pixels it
overlaps in the original. Where the value of a scaled down minimum pixel
exceeds the value of its corresponding scaled down maximum, both are
replaced by the value of the corresponding scaled down best-estimate pixel.

This method of scaling ensures that pixels in the best-estimate image
almost never scale up to a value outside of the bounds posed by the
minimum and maximum images. While this method is ad-hoc it should not
affect the outcome, as the final step is to optimize the image at its original
scale.
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Figure 1.1: Grid positions when scaling an image. A pixel in the coarser grid has
been highlighted in dark gray, and the pixels it overlaps in the finer grid highlighted
in light gray.

Reflection is used at the edges of the image. If the image is tilable, tiling
may be used instead.

1.4 Results

The standard “Lena” image [Sjööblom, 1972] was used to test the method.
Four different versions of Lena were used:

A. Lena encoded with a palette of only 16 gray levels. The levels were
evenly spaced and the image was not dithered.

B. Lena over-compressed using JPEG, with only 0.385 bits per pixel.

C. Lena with simulated over-exposure. Pixel values exceeding
three-quarters of the maximum brightness were clipped.

D. The unmodified Lena image, which contains a small amount of noise.
This may be from the grain of the original photograph, the printing
process, the scanning process, or some combination thereof.
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Figure 1.2: Neighbours of a pixel used by the predictor.

The texture model used was based on the twelve neighbours shown in
Figure 1.2. The values used by the predictor were: a constant, the value of
each neighbour, and the result of multiplying the values of each possible
pairing of the neighbours. This set of values allows the predictor to take the
form of any quadratic function of the neighbours’ values. The predictor had
a total of 91 terms.

In case A, the true pixel values could vary from those of the image by up to
1
32

of its total dynamic range. The input and result are shown in Figure 1.3.
As can be seen, the distinct levels of the input image have been smoothed
into continuous gradients. With the exception of some fine texture in the
hat, the detail of the original image has been well preserved.

In case B, the distortion is especially visible near the edges of the 8× 8
Discrete Cosine Transform blocks used by JPEG. The range of variation
was therefore set higher in the edge pixels of each block than the other
pixels, and higher still in the corner pixels. Pixels in the corners were
allowed to vary by up to 12% of the image’s total dynamic range, pixels on
the edges were allowed to vary by 8%, and the remaining pixels 4%. The
result is shown in Figure 1.4. In the result, the “blockiness” of the input
has been largely removed, without degrading the image significantly.

In case C, the uncertainty is in the value of the pixels in the over-exposed
regions. In these regions the pixels could originally have had any value
brighter than their current value. Results are shown in Figure 1.5. The
reconstruction is less than perfect. As large areas of the picture were
obliterated by the simulated over-exposure, this is not surprising. The
shoulder has been reconstructed approximately, but with some strange
diagonal banding that appears to mimic the hat’s texture. The
over-exposed sections of the hat have not been reconstructed convincingly,
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Input image Result

A 34.29 34.93
B 33.73 33.74
C 34.41 38.05
D ∞ 39.54

Table 1.1: Peak-Signal to Noise Ratio in decibels, as compared to the original Lena
image.

but are some improvement on the original. The reconstruction of a fine
light edge about the bottom and rear of the hat is a notable success (see
the detail image), as is the reconstruction of Lena’s left eye.

In case D, the error was assumed to be small and constant ( 1
30

of the
image’s dynamic range). The result (Figure 1.6) has an air-brushed,
“cover-girl” quality. Much of the noise has been removed. The fine detail in
the hat has been degraded, but the image is otherwise sharp.

The Peak-Signal to Noise Ratio for each case is listed in Table 1.1. Though
only an approximation of the perceived image degredation [Bhaskaran and
Konstantinides, 1995, pp. 9], the PSNR is a simple and objective measure.
The PSNR improved slightly for image A, and substantially for image C.
Image B was not improved significantly, possibly due to systematic errors in
the DC coefficients of the compression blocks; the method can not
reconstruct these errors, but they are also unimportant perceptually.

1.5 Discussion

Previous methods of noise removal have used simple models of texture,
preventing extrapolation of features such as highlights and even reducing
the existing features in restored images. The method given here has been
shown to not have this limitation, with features such as highlights
recreated. Sharp edges were also preserved. Increasing the accuracy of the
texture model should allow restoration of other feature types.
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While more detailed than previous models, the texture model used here is
not fully general. For full generality, the texture model would need to be
able to predict arbitrary probability distributions. Specification and
optimization of a model this general is difficult. Lesser generalizations are
possible, including use of more terms in the predictor, prediction of the
standard deviation of each pixel in addition to the expected value, and use
of robust merit functions based on L1 or Huber functions (as in Rudin et al.
[1992] and Llados-Bernaus et al. [1998]).

The most likely texure model and image were found, but this may not
represent well the set of likely images and models. For example, the image
produced is almost always smoother than average. It may be better to
choose a random sample from the possibility space, or average over all
possibilities (weighted by likelyhood). To this end, a set of random sample
images might be produced by the Metropolis-Hastings algorithm or one of
its variants (see Robert and Casella [1999]).

An image restoration technique that can invent details is slightly dangerous.
In places where restoration must be reliable, such as medicine or the
military, the method should only be used with care. However, a technique
that tailors itself to an image to better restore its specifics may provide
enhancements otherwise impossible, which could be crucial in these places.

If compression artifacts can be removed as they were in this chapter, is
lossy compression easy? The standard assumption has been that lossy
compression requires a detailed model of human perception, taking into
account phenomena such as masking. But what if compression artifacts
arise because the decoder produces implausible images that lack internal
textural self consistency, and that human perception is simply sensitive to
this? Were decoders to produce more plausible images given limited
information, detailed modelling of perception might become unimportant.
The lossy aspect of lossy compression might reduce to a simple form of
quantization, and the well-studied techniques of lossless compression could
be applied. As further evidence, see the author’s lossy audio compression
software [Harrison, 2001], which contains 33kB of source code only.

The method described in this chapter represents a generic method for filling
in gaps where a set of data has missing elements or is known only
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imprecisely. It might, for example, be transferred to the audio domain to
reconstruct noisy or clipped recordings, or applied to other time series data.
Combined with Metropolis-Hastings sampling, it may be a useful statistical
technique for filling in missing data or for prediction.

12



Chapter 1 Texture modelling for noise removal [DRAFT]

Input Result

detail: detail:

Figure 1.3: Input and result for test case A.

13



Chapter 1 Texture modelling for noise removal [DRAFT]

Input Result

detail: detail:

Figure 1.4: Input and result for test case B.
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Input Result

detail: detail:

Figure 1.5: Input and result for test case C.
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Input Result

detail: detail:

Figure 1.6: Input and result for test case D.
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